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Abstract

A discrete velocity model is employed to simulate the nonlinear
relaxation of anisotropic distribution functions. As a test of the sim-
ulation, the relaxation of a nonequilibrium distribution function of a
test-particle dilutely dispersed in a second major constituent is con-
sidered. The results with the discrete velocity model are compared
with expansion solutions of the Boltzmann equation. The relaxation
of anisotropic distributions in non-neutral plasmas is also considered.

1 Introduction

The purpose of this paper is to study the applicability of a discrete veloc-
ity model to the relaxation of an anisotropic non-neutral plasma for which
the relaxation is due to electron-electron Coulomb collisions. An alternate
approach used in plasma physics is based on solutions of the nonlinear
Fokker-Planck equation [1]. One of the main difficulties is the singular-
ity of the differential Rutherford cross section at small scattering angles
which requires the use of a cut-off in angle or impact parameter, or the
more rigrous Lenard-Balescu equation [2]. The present paper considers
the integral form of the nonlinear Boltzmann equation and the represen-
tation in the discrete velocity approximation. The methodology that we
use follows the ones reported recently [3]-[5]. The main objective is to con-
sider the relaxation to equilibrium of an initial nonequilibrium anisotropic
electron distribution function. The initial distribution is taken to be a bi-
Maxwellian with different temperatures characterizing the transverse and
longitudinal translational energies, analogous to the conditions of recent
experimental studies [6].

As a test of the simulation, we consider the relaxation of a neutral
constituent dilutely dispersed in a large excess of a second component which
remains at equilibrium. For the hard sphere interaction between the two
components, the relaxation of the ‘test-particle’ distribution function can
be calculated with the expansion of the distribution function in Sonine
polynomials. We compare these solutions and those obtained with the
discrete velocity model in terms of the relaxation of the temperature of the
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test-particles.

Section 2 of the paper briefly discusses the details of the discrete velocity
model that is used. Section 3 presents the benchmark test case. The results
for the nonlinear relaxation of anisotropic non-neutral plasmas is presented
and discussed in Section 4.

2 Discrete Velocity Model

The Boltzmann equation for this problem is

%tht) = / [£1f — f1flg o(g,x) dxdv. (2.1)

The Boltzmann equation is strictly valid for a gas at low densities for which
only short range binary collisions are important. A common assumption in
plasma physics is that large angle collisions are unimportant relative to the
more common small angle collisions. The effects of large impact parameter
collisions are often discarded by cutting off the cross-section at a collision
angle corresponding to an impact parameter equal to the Debye length.
The Boltzmann equation is thus transformed to the differential Fokker—
Planck equation. Shoub [7,8] has recently questioned this approximation
for high energy test particles in a Maxwellian bath.

In the present paper, we proceed from the integral form of the Boltz-
mann equation and apply the discrete velocity model so that eqn (2.1) is
replaced by the discrete Boltzmann equation (DBE) given by,
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where the N;(t) are values of the distribution function on the box centered
on velocity 7, and

AfJI = |v; — vj|af}.

Here Af]' is the transition probability for the collision pair with initial
velocities v;, v; resulting in vg, v; velocities. The effect of the cross-section
is given by a:-‘j’ , the probability of choosing the k,l outcome from a ¢, j
collision. The resolution of the velocity grid is specified by, r, the number

of speeds on one half-axis.
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The discrete Boltzmann equatjon can be written

dN(2)

—~ = L(N) = C(N) - D(N), (2.2)

where N(t) = (Ny(t), Na(t), ..., Np(t)) is the discrete representation of the
distribution function, C(N) is the gain term in the DBE, and D(N) is the
loss term. A Taylor expansion of N(t) in ¢ is

d*N*
dt?

. . dN'# 1
t+1 — 1 t <« 2
N N+ At—— i+2(At)

+0l(ar?, (2.3)

where the abbreviations N* = N(¢;) and N**! = N(t; + At) are used.
The derivative terms can be rewritten as dN*/dt = L' and d?N‘/dt? =
(L* — L*-1)/At, where L' = L(N*). This gives a second order (in At)
explicit scheme for N,

N+l = Ni 4 921(30‘ - L'"1Y) 4 0[(At)?). (2.4)
An implicit scheme can be obtained by combining forward and backward
time steps,
. . AtdN| 1 (A\* &N
i+1/2  _ i Aaraly L[ty aiN 3
N N+2dt]i+2(2> dt2.+0[(A)]’
41 AtdN 1 (-At\® &N
= Nit1_ T - —) — t)3].
5 dt ..+1+2( > ) ar| oAy
1+1

to give the second order implicit scheme,

Nitl= Ni 4 %(L"*l + L) + O[(At)3).

The C term is adequately treated with the explicit method, but the D
term requires the implicit scheme to be stable. Approximate values for
D'*+1 are computed with an iteration. The estimate Di+! = Di is used to
compute provisional values for N*t+!. Then improved estimates for Di+1
are computed and N**+! is re-evaluated. In the linear test particle problem
the same scheme is used but no iteration is needed for the D term.

3 Benchmark Test Problem

In this section, we consider the relaxation of a test-particle distribution in
a large excess of a second component. The initial distribution of the minor
species is a Maxwellian at a temperature different from the temperature
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of the major species which is assumed to remain at equilibrium. If the

distribution function is written as, f(v,t) = f§o)(v)[1 + ¢(v,t)], then the
Boltzmann equation for the perturbation ¢(v,t) is given by,

§°’6at—¢ = / AV £ (02)[8(v1,) — $(v1,)]o(g,x) g dxdva.  (3.1)

We expand ¢ in Sonine polynomials, ¢(z,t) = 327 | an(t)Ss(z?) where z =
+/mc?/2kT is the reduced speed. We reduce the Boltzmann equation to a
set of linear differential equations, da,,/dt = Eff:l Amna, where A,,,, are
the matrix elements of the collision operator. The solution is of the form,
an(t) = Eszo care~ ! where the c,; coefficients are chosen to match
the intial condition, and Ay are the eigenvalues of the collision operator.
The temperature of the minor species is given by Ti(t) = T2[1 — a;(t)].
Figure 1 shows a comparison for the hard sphere cross section between
the results obtained with the discrete velocity model and the results with
the expansion in Sonine polynomials. Excellent agreement is obtained.
The computational burden for the DBE is high, although the polynomial
method may be difficult to apply for other cross sections and diverges for
T,/T1(0) < 0.5. With this test calculation, the DBE code has been verified.
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Figure 1. Temperature relaxation of a minor species. Solid lines are the poly-
nomial solutions (N=7) and the symbols are the results with a discrete velocity
model (r=T); hard sphere cross section; % = noy/2kT> /mi7d?; my = ma.
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4 Relaxation of Anisotropic Distributions

The relaxation of an initial anisotropic distribution for a single species
was considered with the discrete velocity model. The initial distribution
function was taken to be an anisotropic bi-Maxwellian distribution of the
form,

Bi—Maxz m m m(v; +v;)  mo?
_ _ = 4.1
f ™) = ok Zek P k7 ey 4D

A measure of the degree of the anisotropy is given by a(t) = Tj(t)/TL(t).
Figure 2 shows the relaxation of an anisotropic distribution function
in terms of «a(t) as obtained with the discrete velocity model for a hard
sphere cross section. Three different numbers of discrete velocities corre-
sponding to r=6, 7 and 8 were employed, with results that are essentially
indistinguishable to the resolution of the graph.
The Coulomb cross section is given by,

64 . —4
U(an)=Wsm (

). (4.2)

(NP

As mentioned previously, the collision operator in the Boltzmann
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Figure 2. Relaxation of an anisotropic distribution function. Convergence of the
discrete velocity model for a hard sphere cross section. The curves for resolutions
r= 6, 7 and are 8 barely distinguishable, % = na/2kT> /m, 7d2.
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equation is undefined because the differential cross section diverges at small
scattering angles. The objective is to develop a discrete velocity model for
Coulomb collisions. The singularity in the differential cross section at small
scattering angles poses the main difficulty. In this preliminary application
of a discrete velocity model, we have considered two model cross sections
derived from the Rutherford cross section, eqn (4.2).

The relaxation for an anisotropic distribution in a nonneutral plasma
is shown in Figure 3. Figure 3(A) is for the model cross section which is
anisotropic but independent of energy, o(g, x) = sin™*(x/2). Figure 3(B)
is for the isotropic cross section, o(g, x) ~ g—%. For both the resolution in
the discrete velocity model is high, r=10 in Figure 3(A) and r=7 in Figure
3(B). The present version of the discrete velocity code was not sufficiently
stable to provide results for the realistic Coulomb cross section, eqn (4.2).
Work is in progress to modify the code appropriately. The present work
complements the recent work of Shoub [8] in a critique of the use of the
Fokker-Planck equation, as well as earlier work by Przybylski and Ligou
[9] and Pomraning [10] on modification of the Fokker-Planck equation to
take account of small impact parameters.

T I T I T I T
4.0 A _

a(t)

N |

00 f—t——4—F—+—F—

4.0 ®B) _]

a(t)

2.0 \ —

0.0 L I Il I 1 | 1
0 0 g 2 30 40

Figure 3. Relaxation of an anisotropic distribution function with the dis-

crete velocity model, &(t) = T)/TL. (A) anisotropic cross section model,

o(g, x) = sin_”(x/z)’ r =10; (B) isotropic Coulomb cross section, (9, X) = g7t

r = 10.
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Summary

A discrete velocity code was developed for the study of the relaxation of
anisotropic distributions in nonneutral plasmas. The computational bur-
den is high as a large number of discrete velocities are required to achieve
convergence. The code was successfully benchmarked against known so-
lutions for a linear relaxation problem. It provided accurate solutions to
the Boltzmann equation for systems with short ranged potentials and for
model Coulomb cross sections. Work is underway to modify the code so as
to be applicable to realistic plasma systems.
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