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ABSTRACT
Background. Density-dependent regulation is ubiquitous in population dynamics, and
its potential interaction with environmental stochasticity complicates the characteriza-
tion of the random component of population dynamics. Yet, this issue has not received
attention commensurate with its relevance for descriptive and predictive modeling
of population dynamics. Here we use a Bayesian modeling approach to investigate the
contribution of density regulation to population variability in stochastic environments.
Methods.We analytically derive a formula linking the stationary variance of population
abundance/density under Gompertz regulation in a stochastic environment with
constant variance to the environmental variance and the strength of density feedback,
to investigate whether and how density regulation affects the stationary variance. We
examine through simulations whether the relationship between stationary variance and
density regulation inferred analytically under the Gompertz model carries over to the
Ricker model, widely used in population dynamics modeling.
Results. The analytical decomposition of the stationary variance under stochastic
Gompertz dynamics implies higher variability for strongly regulated populations.
Simulation results demonstrate that the pattern of increasing population variability
with increasing density feedback found under the Gompertz model holds for the Ricker
model as well, and is expected to be a general phenomenon with stochastic population
models. We also analytically established and empirically validated that the square of
the autoregressive parameter of the Gompertz model in AR(1) form represents the
proportion of stationary variance due to density dependence.
Discussion. Our results suggest that neither environmental stochasticity nor density
regulation can alone explain the patterns of population variability in stochastic
environments, as these two components of temporal variation interact, with a ten-
dency for density regulation to amplify the magnitude of environmentally induced
population fluctuations. This finding has far-reaching implications for population
viability. It implies that intense intra-specific resource competition increases the risk of
environment-driven population collapse at high density, making opportune harvesting
a sensible practice for improving the resistance of managed populations such as fish
stocks to environmental perturbations. The separation of density-dependent and
density-independent processes will help improve population dynamicsmodeling, while
providing a basis for evaluating the relative importance of these two categories of
processes that remains a topic of long-standing controversy among ecologists.
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INTRODUCTION
Density-dependent regulation is a pervasive feature of population growth processes. It
often operates in concert with demographic stochasticity and environmental noise to
generate temporal fluctuations in population abundance/density (e.g., May, Hassel &
Southwood, 1974; Royama, 1992; Woiwod & Hanski, 1992; Lande, Engen & Saether, 2003;
Brook & Bradshaw, 2006). The prevailing form of density regulation is compensation or
negative density dependence, which describes a pattern of decreasing population growth
rate with increasing population abundance/density, and vice-versa. This phenomenon may
result from intraspecific competition for limited resources (e.g., Hansen et al., 1999) or
other mechanisms such as predation and diseases that affect net population growth rate in
a density-dependent fashion (Hixon, Pacala & Sandin, 2002).

Hixon, Pacala & Sandin (2002) highlight the following three salient features of
populations undergoing compensatory density regulation. (1) Persistence: the population
persists for many generations; (2) boundedness: the population size remains between
some positive lower and upper bounds, and (3) return tendency: the population tends to
increase below a certain threshold, the equilibrium level, and to decrease when above that
threshold. The return tendency is a stabilizing mechanism due to its proclivity to restore
populations to their equilibrium levels following a disturbance (Murdoch, 1994; Yodzis,
1995). This feature explains how the harvesting of an abundant population may increase
rather than decrease total production in the next generation, and is consequently essential
to the concept of sustainable yield in fisheries and wildlife management (Rose et al., 2001;
Fowler, 1987).

A relatively less documented form of density dependence is depensation also known as
inverse density dependence, positive density dependence or Allee effect (Allee & Bowen,
1932), which refers to a pattern of decreasing population growthwith decreasing population
density at low densities. This form of density dependence may arise from a variety of
mechanisms, including the tendency for predators to kill a fixed number of prey, causing
the death rate of the prey population to be higher at low density, and the decrease in
birth rate at low population densities due to the difficulty of finding mates. Though rarely
detected in practice, the Allee effect is reportedly widespread in nature (Allee & Bowen,
1932;Dennis, 1989; Courchamp, Clutton-Brock & Grenfell, 1999; Kramer et al., 2009). There
are at least two reasons for the rare detection of the Allee phenomenon namely, (1) the
difficulty of detecting natural populations at low density, and (2) the distortion of statistical
analyses by the high variance inherent in small sample sizes (Drake & Kramer, 2011;Kramer
et al., 2009).Drake & Kramer (2011) extended the logistic growth model to incorporate the
Allee effects. Here we restrict our attention to negative density dependence.

There has been since the 1920s a long debate among ecologists on the relative importance
of exogenous (environmental) versus endogenous (density-dependent) factors in driving
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temporal fluctuations in population size/density. This debate reached its pinnacle
during 1950s with on the one hand the density-independent and on the other hand,
the density-dependent lines of thought led respectively by Andrewartha & Birch (1954) and
Nicholson (1957). The discovery, byMay (1976) that simple discrete-timemodels of density
dependence could generate very complex and potentially chaotic dynamics provided grist
to the mills of Nicholson’s school, reinforcing the view that observed empirical patterns
could be explained without resorting to stochastic factors.

Over recent decades, evaluations of model predictions against observed patterns have
resulted in a broad recognition that temporal fluctuations in population abundance/density
result from both density-independent and density-dependent factors, potentially
interacting in non-trivial ways (Coulson, Rohani & Pascual, 2004). This emerging consensus
has shifted the research agenda in population ecology from the simple detection of
density-dependence in population time series to the assessment of population dynamical
consequences of density regulation. Despite its high relevance for descriptive and
predictive population dynamics modeling, the interplay of density-dependent and density-
independent population dynamics processes has not received adequate attention (but see
e.g., Fromentin et al., 2001; Ohlberger, Rogers & Stenseth, 2014).

In this study, we analyze, through a combination of analytical derivations and numerical
simulations, the interaction between environmental stochasticity and density regulation
in driving temporal fluctuations in population abundance. Using the stochastic Gompertz
model to describe the population dynamics in a stochastic environment with constant
variance, we analytically derive an explicit formula linking the stationary variance of
population abundance/density to the environmental variance and the strength of density
feedback. We derive a formula quantifying the contribution of density regulation to
population variance in stationary phase. We conduct a simulation study to corroborate
empirically the analytically established relationship between density feedback and stationary
variance and to check whether the same pattern of association holds for the Ricker model
(Ricker, 1954), which is also widely used for population dynamics modeling, particularly
in fisheries.

MATERIALS & METHODS
Model specification and analytical derivations
Let Y0 and Yt denote respectively the initial population size (population size at time 0) and
the population size at time t (t ≥ 1). We assume a discrete-time stochastic Gompertz model
for the population dynamics (Reddingius, 1971; Royama, 1981; Sibly et al., 2005; Dennis
et al., 2006; Mutshinda & O’Hara, 2011; Mutshinda, O’Hara & Woiwod, 2009; Mutshinda,
O’Hara & Woiwod, 2011; Mutshinda et al., 2019) so that the population size at time t ≥ 1
is given by

Yt =Yt−1exp
{
r
(
1−

ln(Yt−1)
k

)
+εt

}
(1)

where r > 0 is the intrinsic growth rate (i.e., er is the multiplicative population growth
rate in the absence of density dependence), whereas the realized growth rate Yt/Yt−1
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decreases with increasing population size Yt−1, and k > 0 is the natural logarithm of the
carrying capacity or equilibrium population size/density denoted by K . The error term
εt , assumed to be Gaussian with mean zero and variance σ 2

t , typically integrates process
stochasticity (demographic and environmental stochasticity) and observation error. The
Gompertz model as presented here is phenomenological and only describes population
level changes without explicitly accounting for individual level processes or age structure,
in contrast with mechanistic models that translate individual parameters into population
level consequences.

For the purpose of the present study, we rely on simulated data and so, we assume that
the population size is observed without error. In addition, we know the data-generating
model when in practice the error term typically involves the effect ofmodelmisspecification
as well. For small populations, demographic stochasticity may be important, and its inverse
scaling with the population size introduces time-dependence in the random error term σ 2

t
(e.g., Saether et al., 2000). Since our focus is on the population dynamics in stationary phase,
we assume that the population size is large enough for demographic stochasticity to be
unimportant. Therefore, we consider the process error to be entirely due to environmental
fluctuations in a stochastic environment with constant variance, so that σ 2

t = σ
2 with the

error terms εt , t ≥ 1 being serially independent. On the natural logarithmic scale with
yt = ln(Yt ), model (1) becomes

yt = yt−1+ r
(
1−

yt−1
k

)
+εt . (2)

Letting β = 1− rk−1, we can re-write model (2) as

yt = r+βyt−1+εt (3)

which is a first-order autoregressive [AR(1)] model with autoregressive coefficient β.
From the expression of β in terms of r and k, it follows that k = r(1−β)−1, which

establishes a one-to-one correspondence between the parameters of the Gompertz model
in AR(1) form (Eq. 3) and those of the standard Gompertz model (Eq. 1). However, the
AR(1) form is more convenient for analyzing the model’s dynamic behavior as we do next.

We start by analyzing the dynamic behavior of the deterministic Gompertz model in
AR(1) form (i.e., Eq. 3 without the error term εt ).We discuss the existence of an equilibrium
point and the pace at which the population size/density approaches the equilibrium. We
then consider the stochastic version of the model (Eq. 3) for which the equilibrium is a
non-degenerate distribution (the stationary distribution) rather than being a single point
as in the deterministic model. We analyze the temporal fluctuations of the population size
around the mean value of its stationary distribution.

Dynamic behavior of the deterministic Gompertz model
The deterministic part of the Gompertz model in AR(1) form is given by the first-order
difference equation

yt = r+βyt−1. (4)
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If |β|< 1, the system will eventually converge to an equilibrium state y∞ at which the
population size remains constant, meaning that y∞= r+βy∞. Solving this equation for
y∞ yields the following expression for the non-trivial equilibrium

y∞= r(1−β)−1= k. (5)

We can use the relation r = y∞(1−β) resulting from (5) to describe the population
dynamics in terms of y∞ as y1= y∞+β

(
y0−y∞

)
, y2= y∞+β2(y0−y∞), and by induction

we obtain the following closed-form solution to the first-order difference Eq. (4).

yt = y∞+β t (y0−y∞)
. (6)

Consequently, yt will converge to y∞ provided that |β|< 1, with faster convergencewhen
|β| is closer to zero, with yt approaching the equilibrium state y∞ eithermonotonically from
above or from below when 0<β < 1 or through damped oscillations when −1<β < 0.

Following from Eq. (6), yt relates to yt−1 as yt = y∞+β
(
yt−1−y∞

)
, which can be

re-arranged as yt = (1−β)y∞+βyt−1. The relationship yt = (1−β)y∞+βyt−1 indicates
that yt is a linear combination of y∞ and yt−1 with the autoregressive coefficient β
providing a direct measure of the dependence of yt on yt−1. As a result, the autoregressive
parameter of the Gompertz model in AR(1) form is often referred to as the strength of
density dependence (e.g., Hampton et al., 2013; Ponciano, Taper & Dennis, 2018; Messmer,
2019; Peeters et al., 2022). We also adopt this terminology.

Deterministic models of population dynamics draw on the assumption that vital rates
are constant over time, so that a single set of input values uniquely determines the output
value. However, an obvious feature of the real world is that the environment varies
continually. Environmental stochasticity refers to the variability in demographic rates
caused by random variations in environmental conditions, whereas sampling variations
in independent outcomes of demographic events (births, death and dispersal) among
individuals in a finite population produces a different kind of fluctuations in population
dynamics known as demographic stochasticity. While environmental stochasticity affects
all populations irrespective of size, demographic stochasticity is generally only relevant in
small populations due to its inverse scaling with the population size. We refer to Lande,
Engen & Saether (2003) for details on statistical methods for estimating demographic
and environmental stochasticity from empirical data. We next consider the dynamic
behavior of the stochastic Gompertz model and investigate the interaction between
density-dependent effects and environmental noise in driving temporal fluctuations in
population abundance/density.

Dynamic behavior of the stochastic Gompertz model
The stochastic Gompertz model in AR(1) form is given by Eq. (3). If |β|< 1 the population
size will eventually reach a stationary distribution (or equilibrium distribution), which is
the stochastic version of an equilibrium in the deterministic model. In stationary phase,
the population growth rate is zero on average. Since the additive error εt are assumed to be
normally distributed, the stationary distribution is also normal with long-run mean value
µ∞ and variance v∞ determined by their time-invariance property. Taking expectations
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of both sides of Eq. (3) and applying the time-invariance property of the long-run mean
yields the equation µ∞= r+βµ∞ whose solution for µ∞ is

µ∞= r(1−β)−1= k (7)

Alternatively, taking variances of both sides of (3) and applying the time-invariance
property of the long-term variance yields the equation v∞=β2v∞+σ 2 whose solution for
v∞ is

v∞= σ 2/(1−β2). (8)

Equations (7) and (8) indicate that both the mean of the stationary distribution, which
is identical to the deterministic stable equilibrium value y∞= k (the log-carrying capacity),
and the stationary variance (i.e., the variance of population time series in stationary phase)
depend on the strength, β, of density regulation. In addition, the stationary variance v∞ is
proportional to the environmental variance, σ 2, and relates to the density feedback in such
a way that stronger density regulation (i.e., |β| values close to 1) induces higher variability.

It is worth emphasizing that stationarity is a key requirement for analyzing density
dependence in population time series, and Eqs. (7) and (8) only make sense for stationary
time series. Therefore, the sensible range for the autoregressive parameter β is the interval
(−1,1). However, since we are interested in the stationary variance which depends on β
only through β2, we restrict attention on β values in the unit interval 0≤ β < 1. From
our model assumptions that r and k are both positive and the expression β = 1− rk−1

connecting the autoregressive coefficient of the Gompertz model in AR(1) form to the
parameters r and k of the standard Gompertz model, it follows that 0≤β < 1 corresponds
to r ≤ k.

When β = 0, which corresponds to the case r = k in the standard Gompertz model
formulation, the population trajectory follows a Gaussian white noise process shifted at r .
This process is stationary with constant variance σ 2.When β = 1, which arises as a limiting
case when k tends to infinity in the standard Gompertz model formulation, the dynamics
are density independent, and the population trajectory is a random walk process with drift
r . This process is not stationary since Var

(
yt

)
= tσ 2 is unbounded and E

(
yt

)
= y0+ rt is

only constant when r = 0 (i.e., for the random walk without drift), while a key condition
for (weak) stationarity is that the mean and variance of the time series are constant, the
other requirement being that for any integer h, Cov(yt ,yt+h) depends only on h and not
on t .

For density-dependent dynamics where β is statistically different from zero and |β|< 1,
the population fluctuates around the stationary mean µ∞ with variance σ 2/(1−β2), where
σ 2 represents the environmental variance. Therefore, the portion of the stationary variance
due to density regulation, herein denoted by σ 2

dd , is given by the difference between the
stationary variance σ 2/(1 −β2) under density-regulation and its counterpart σ 2 in the
absence of density feedback on population growth rate. That is,

σ 2
dd =β

2σ 2/(1−β2). (9)
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Consequently, the proportion of the stationary variance v∞ due to density regulation is

ϕdd = σ
2
dd/v∞=β

2. (10)

Interestingly, the proportion of the stationary variance v∞ due to density regulation
is simply the square of the density-dependence effect β. This provides a biological
interpretation of the autoregressive coefficient of the AR(1) model when applied to
population dynamics, besides being a measure of the strength of density dependence.
Equation (9) provides a tool for separating the stationary variance of population time
series into a density-independent component and a density dependent counterpart.

A key motivation for using the Gompertz model is that it can be written as an AR(1)
model, which is simple with known statistical properties and established inferential
procedures (Mutshinda & O’Hara, 2010). Because the AR(1) model is a linear model with
Gaussian errors, maximum likelihood estimates of r , β , and σ 2, which are identical to
least square estimates, can be obtained by performing a linear regression of yt on yt−1
(t = 1,2,3,...) using standard statistical packages. However, confidence intervals from
standard statistical packages are not valid because the y ′t s are not independent due to
the autoregressive structure in the model. Dennis & Taper (1994) discuss bootstrap and
jackknife procedures for constructing confidence intervals of the AR parameters. In a
Bayesian framework, priors distributions can be defined to appropriately constrain the
model parameters to more sensible range of values, thereby reducing posterior uncertainty
while guaranteeing parameter identifiability (Mutshinda, 2009a;Mwanza, 2010).

A common objection to the Gompertz model is that the growth rate depends, if
applicable, only logarithmically on the population density allegedly inducing weaker
density feedback than the closely related Ricker model (Ricker, 1954) where the growth
rate at time t depends on Yt−1, the actual population size (Dennis & Taper, 1994). The
Stochastic Ricker model is given by

Yt =Yt−1exp
{
r
(
1−

Yt−1
K

)
+εt

}
, (11)

where r is the intrinsic growth rate andK is the carrying capacity or equilibrium population
density on the scale of untransformed population size, and εt are zero-mean random shocks
to the population growth rate assumed to be normally distributed and serially independent.
TheRickermodel is widely used for population dynamicsmodeling, particularly in fisheries.

In the next section, we describe a simulation study designed to corroborate empirically
the pattern of increasing stationary variance with increasing strength of density regulation
under the Gompertz model and to investigate whether this pattern carries over to the
Ricker model.

Report on the simulation study
Data simulation
Given numerical values of the parameters r,k and σ , an initial log population size y0, and
a routine for generating standard normal random variables, one can recursively generate
trajectories y0, y1, y2, . . .yn from the Gompertz model with initial population density set
to the log-carrying capacity. We simulated replicated population time series over 300 time
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steps and discarded the first 200 observations to ensure that the last 100 data points come
from the stationary distribution. We tuned the parameters of the data-simulating model
to mimic different levels of density regulation and different levels of environmental noise.
Since the parameter β only depends on the positive parameters r and k through the ratio
r/k , one can generate data with different levels of density-regulation (different β values) by
fixing one of the two parameters, typically the carrying capacity, and varying the other (e.g.,
Greenwell & Ng, 1984). Fixing the carrying capacity to 1 amounts to expressing population
density in units of the carrying capacity. In our simulations, we fix the log-carrying capacity
to 1, so that β = (1− r) for 0< r < 1. We simulated data under four different levels of
environmental noise, with environmental variance set to 0.10, 0.15, 0.20 and 0.25, and
three different values of r namely, 0.8, 0.6, and 0.4, corresponding to β values 0.2, 0.4, and
0.6, respectively.

We graphically checked whether the empirical stationary variance v∞ increased with
increasing the strength of density feedback as implied by the analytical result ((8)). We
computed the contribution σ 2

dd of density regulation to the empirical stationary variance
v∞ at different levels of density regulation as the difference between the empirical stationary
variance of simulated population trajectories and the assumed environmental variance.

In practice, the model parameters are unknown, and one has to rely on estimates
obtained from themodel fitting to data.We examined the relationship between the strength
of density regulation and the proportion of stationary variance due to density regulation
using environmental variance estimates over 100 replicated population trajectories at each
of the three levels of density regulation under consideration.

A question that springs to mind is whether the pattern of increasing stationary variance
with increasing strength of density feedback inferred under the Gompertz model holds
for the Ricker model as well. Since under the Ricker model, unlike the Gompertz model,
we do not have an expression separating the stationary variance into contributions from
environmental stochasticity and density regulation, we rely on simulations to tackle
this question. We fit, with a Bayesian approach (Gelman et al., 2013; Mutshinda et al.,
2022), the stochastic Gompertz and stochastic Ricker models to data replicates simulated
from the stochastic Gompertz model with different levels of density regulation. For the
Gompertz model, we independently assigned a Gamma(1,1) prior on the intrinsic growth
rate r, a standard normal prior independently on the autoregressive coefficient β and an
InvGamma(0.1,0.1) prior on the environmental variance σ 2. For the Ricker model, we
independently assigned a Gamma(1,1) prior on the on the intrinsic growth rate r and
Gamma(0.1,0.1) priors on the carrying capacity K and the environmental variance σ 2.
We used Markov chain Monte Carlo methods (Gilks, Richardson & Spiegelhalter, 1996) to
simulate, via the Bayesian freeware OpenBUGS (Thomas et al., 2006; Mutshinda, 2009b),
from the joint posterior distributions. We primarily ran the models in OpenBUGS to
assess their convergence both informally through visual inspection of traceplots and
autocorrelation plots in OpenBUGS, and formally by looking at the Gelman, Rubin
statistics via the R package CODA (Plummer et al., 2006), and found that at least 2,000
iterations were required for convergence. Therefore, we used a burn-in period of 4,000
iterations for both models.
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Figure 1 Relationship between stationary variance and the strength of density dependence. Box-and-
whisker plots summarizing the distributions of the stationary variance of simulated population trajectories
at different levels of density regulation, showing the monotonic increase of the stationary variance with
the strength of density dependence in simulated population trajectories. For each boxplot, the height of
the box indicates the 25th (Q1) and the 75th (Q3) per-centiles; the horizontal line inside the box is the
median, and the lower and upper whisker limits are defined as Q1−1.5× IQR and Q3+ 1.5× IQR, re-
spectively, where IQR represents the interquartile range (IQR= Q3−Q1). The dots placed beyond the
whiskers’ edges indicate outliers.

Full-size DOI: 10.7717/peerj.14701/fig-1

We estimated the contribution σ 2
dd of density dependence to the stationary variance v∞

by the difference between the empirical stationary variance of simulated population time
series and the posterior estimate of the environmental variance, and subsequently derived
the proportion ϕdd of stationary variance due to density regulation as ϕdd = σ 2

dd/v∞.

RESULTS
The stationary variance of simulated population trajectories increased monotonically with
the strength of density regulation (Fig. 1).

This result indicates that in a given environment, strongly regulated populations will
exhibit larger temporal fluctuations than weakly regulated ones. In addition, the proportion
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Figure 2 Increasing proportion of stationary variance due density regulation with increasing strength
of density dependence. Box-and-whisker plots summarizing the distributions of the proportion of sta-
tionary variance (i.e., the variance of population time series in stationary phase) due to density depen-
dence under the stochastic Gompertz (gold fill) and Ricker (steel blue fill) models at different levels of
density regulation.

Full-size DOI: 10.7717/peerj.14701/fig-2

1−σ 2/v∞ of stationary variance due to density regulation increased monotonically with
the strength of density dependence in simulated population time series (Fig. S1 in Online
Supplemental Material).

As noted earlier, the environmental variance σ 2 is unknown in practice and needs
to be estimated from data. Our Bayesian model fitting was effective at retrieving the
environmental variance in population time series under both the stochastic Gompertz and
stochastic Rickermodels (Fig. S2). This allowed us to evaluate the proportion ϕdd = σ 2

dd/v∞
of stationary variance due to density regulation through Eq. (9). Under either model, the
proportion of stationary variance due to density regulation increased monotonically with
the strength of density feedback in the data (Fig. 2).

In addition, the inferred proportion of stationary variance due to density dependence
was approximately equal to the square of the autoregressive parameter β over simulated
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Figure 3 Relationship between the strength of density dependence and the proportion of stationary
variance due to density dependence under the stochastic Gompertz model in AR(1) form.Mean values
(solid blue circles) and 95% confidence intervals of the proportion of stationary variance due to density
regulation from fitted stochastic Gompertz model in AR(1) form over 100 synthetic population trajecto-
ries at different levels of environmental noise (environmental variance shown in each panel) against the
strength of density regulation represented by the autoregressive coefficient. The overlaid orange diamonds
indicate the square of the autoregressive coefficient in simulated data.

Full-size DOI: 10.7717/peerj.14701/fig-3

data replicates for the stochastic Gompertz model (Fig. 3), consistent with our analytical
derivation in Eq. (10).

This result provides another biological meaning to the autoregressive coefficient of the
AR(1) model when applied to population dynamics.

DISCUSSION
In this study, we combined analytical derivations and numerical simulations to analyze
the interplay between environmental noise and density regulation in driving temporal
fluctuations in population abundance/density. We derived a formula (Eq. 8) relating the
stationary variance of the population abundance/density under Gompertz-type density
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regulation in a stochastic environment with constant variance to the environmental
variance and the strength of density dependence, implying that density regulation amplifies
the magnitude of environmentally induced population fluctuations. We worked out
a formula separating the stationary variance in population abundance/density into its
density-independent and density dependent components. An important result emerging
from this variance decomposition is that the square of the autoregressive coefficient of the
Gompertz model in AR(1) form represents the proportion of stationary variance due to
density regulation (Eq. 10).

Simulation results substantiated empirically the analytically established pattern of
increasing stationary variance with increasing strength of density regulation under the
Gompertz model (Fig. 1). The Bayesian model fitting was effective at retrieving the
environmental component of the stationary variance under both the stochastic Gompertz
and stochastic Ricker models (Fig. S1). This allowed us to estimate the portion of stationary
variance due to density-regulation by the difference between the stationary variance of
simulated population trajectories and the posterior estimate of the environmental variance
under either model.

We expect the pattern of increasing stationary variance with the strength of density
feedback established analytically and/or empirically under the stochastic Gompertz
and Ricker models (Fig. 2) implying higher temporal variability for strongly regulated
populations to be a general phenomenon with population dynamical models. This is
because the linear relationships in the Gompertz and Ricker models can be considered
as Taylor approximations near equilibrium of more complex density-dependent growth
functions (Dennis & Constantino, 1988).

Simulation results also substantiated empirically the analytically established result
in Eq. (10) that the square of the autoregressive coefficient of the Gompertz model in
AR(1) represents the proportion of stationary variance due to density regulation (Fig. 3).
This finding provides another biological meaning to the autoregressive coefficient β of
the Gompertz model in AR(1) form: Besides being a measure of the strength of density
dependence, β represents the proportion of stationary variance due to density dependence.

Our main finding that density regulation amplifies environmentally induced population
fluctuations has important implications for population viability. It suggests that intense
intra-specific resource competition increases the risk of environment-driven population
collapse at high density, lending support to opportune harvesting as a means to improve
the resistance of managed populations such as fish stocks to environmental perturbations.

Overall, our analytical and empirical analyses demonstrate that the impact of density
regulation on population dynamics involves a deterministic component affecting the mean
population abundance/density and a stochastic component affecting the process variance.
Therefore, the de facto decomposition of process variance into environmental stochasticity
and demographic stochasticity disregards the contribution of density dependence to
population variance in stochastic environments, which may be substantial.
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CONCLUSIONS
We analytically established and empirically verified that environmental noise interacts with
density feedback in convoluted ways, causing density-regulated populations to undergo
stronger fluctuations than expected under the sole influence of environmental stochasticity.
The separation of exogenous (environmental) and endogenous (density-dependent)
components of population variability is essential to evaluating their relative importance,
which remains a topic of continuous debate among ecologists (Coulson, Rohani & Pascual,
2004).

Our analyses demonstrate that one can effectively extract the environmental component
of temporal variability in population dynamics variability by fitting ecological models to
population time series, and the Bayesian approach adopted here has proven fruitful to this
end.

In order to decompose the stationary variance of population size in its density-
independent component and density-dependent components, we made the following
two simplifying assumptions: (1) Demographic stochasticity is unimportant, and (2)
population sizes are recorded without error. While the irrelevance of demographic
stochasticity in large populations is a sensible assumption due to the inverse scaling
of demographic stochasticity with the population size (Lande, Engen & Saether, 2003),
real-world observational population time series are typically fraught with observation
or sampling errors. Inadequate handling of sampling error can induce wrong inferences
about population processes, including spurious density dependence detection (Dennis &
Taper, 1994; Freckleton et al., 2006). Density-dependent population dynamics models that
integrate process variation and observation error are required to analyze the interaction of
environmental stochasticity and density regulation in real-world populations. These kinds
of models can be conveniently developed and fitted in the Bayesian state-space modelling
framework (e.g., De Valpine & Hastings, 2002; Buckland et al., 2004; Dennis et al., 2006).
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