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Abstract:
We introduce a Bayesian framework for simultaneous feature selection and outlier detection in sparse high-
dimensional regression models, with a focus on quantitative trait locus (QTL) mapping in experimental crosses.
More specifically, we incorporate the robust mean shift outlier handling mechanism into the multiple QTL map-
ping regression model and apply LASSO regularization concurrently to the genetic effects and the mean-shift
terms through the flexible extended Bayesian LASSO (EBL) prior structure, thereby combining QTL mapping
and outlier detection into a single sparse model representation problem. The EBL priors on the mean-shift terms
prevent outlying phenotypic values from distorting the genotype-phenotype association and allows their de-
tection as cases with outstanding mean shift values following the LASSO shrinkage. Simulation results demon-
strate the effectiveness of our new methodology at mapping QTLs in the presence of outlying phenotypic val-
ues and simultaneously identifying the potential outliers, while maintaining a comparable performance to the
standard EBL on outlier-free data.
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1 Introduction

In multiple quantitative trait locus (QTL) mapping, the phenotypic trait values 𝑦1, … , 𝑦n of n individuals from
the study population are regressed on their genotypes at p markers scored across the genome, to identify the
genetic loci associated with variation in the quantitative trait of interest, known as quantitative trait loci, and
evaluating their genetic effects. For the purpose of this paper, we restrict attention to experimental crosses
derived from two inbred lines such backcross (BC) and double haploid (DH) progenies with one of two only
possible genotypes at any locus. The regression model for multiple QTL mapping in BC or DH has the form

𝑦𝑖 = 𝛼 + ∑
𝑝
𝑗=1

𝑥𝑖,𝑗 𝛽𝑗 + 𝜀𝑖 (1)

where 𝛼 and 𝑥𝑖,𝑗 denote respectively the population intercept and the genotype of the ith individual at locus 𝑗
(𝑗 = 1, … , 𝑝) coded herein as 0 for one genotype and 1 for the other, so that 𝛽𝑗 is the effect of genotype substitution
at locus 𝑗 from the genotype coded as 0 to the alternative genotype coded as 1. Stochasticity comes in through the
random error terms 𝜀𝑖 (𝑖 = 1, … , 𝑛), typically assumed to be independent and normally distributed around zero
with common variance 𝜎2, implying that the phenotypic values are also normally distributed, conditional on
the marker genotypes. However, real-world phenotypic data often violate the normality assumption as pointed
out by Nascimento et al. [1] among others, due for instance to the presence of outliers. An outlier is defined
as an observation whose value deviates so much from other observations in a dataset as to arouse suspicions
that it results from a different mechanism than the one underlying the bulk of data [2]. Outliers may arise from
various kinds of errors or from the variability inherent in the actual data generating process [3]. While outliers
of the first category represent erroneous information that can be rightfully discarded from the data prior to the
analysis [4], those of the second category are legitimate data and may be the most interesting cases in various
contexts including medical screening, fraud detection, and genetic engineering.

The presence of outlying phenotypic values may unduly impair the robustness of QTL mapping analyses
and overly inflate QTL detection error rates [5, 6]. However, QTL mapping models designed to accommodate
and automatically detect potential outliers are scarce. In this paper, we introduce such a model, with a focus on
Crispin M. Mutshinda is the corresponding author.
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QTL mapping in experimental crosses, and illustrate its implementation with simulated and real data. Before
delving into the details of our new outlier-robust QTL mapping model, we start by reviewing the prevailing
outlier handling methods.

Existing outlier handling methods fall into two broad categories: diagnostic and robust methods [7]. Diag-
nostic methods attempt to separate outliers from the bulk of the data, with a view to discarding the outliers
and allowing the analysis of the “cleansed” dataset by classical methods such as the ordinary least squares
(OLS). In essence, diagnostic methods assume a unique data-generating distribution, deeming as outlier any
observation with critically low probability under the hypothesized distribution. This involves the screening
of all data points, one at a time, for “outlier-ness” using suitable test quantities such as studentized residuals
driven by the leave-one-out scheme [8]. Despite their proven efficiency in single-outlier situations, diagnostic
methods suffer from masking and swamping issues in the presence of multiple outliers [9, 10]. Briefly put, we
say that an outlier masks a second outlier if the latter emerges as an outlier alone, but not in the presence of the
former. Alternatively, we say that an outlier swamps another outlier if the latter arises as an outlier only in the
presence of the former. Unlike diagnostic techniques, robust outlier handling methods involve mechanisms for
mitigating the impact of potential outliers without the need to remove them from the data prior to the analysis.
Robust methods are better suited to handling multiple outliers without suffering from masking and swamping
issues affecting diagnostics methods in the presence of multiple outliers. In contrast to diagnostic methods,
robust outlier-handling methods assume that the data arose from a mixture of two distributions comprising a
“core” distribution supposed to generate the bulk of the data and an alternative distribution held responsible
for producing outliers. Mixture models are straightforward to design under the hierarchical Bayesian frame-
work [11] and relatively easy to fit to data by Markov chain Monte Carlo (MCMC) simulation methods [12]. In a
regression set-up, an outlier is a data point whose response value deviates markedly from the bulk of response
values in the data, whereas a data point with atypical value of the predictor variable is called as a high-leverage
point. While both outliers and high-leverage points may unduly affect regression analyses, high-leverage issues
are rarely reported for categorical predictors. When dealing with multiple predictors, high leverage points may
represent observations with an extreme value for a single predictor or observations with “atypical” combina-
tions of predictor values. This remains a topic for further research.

The two most popular robust outlier-handling methods are the variance-inflation and the mean-shift meth-
ods [13], which rest on premises that outliers originate from shifts in the scale (variability) and in the location
(mean) of the data-generating process, respectively.

The multiple QTL mapping regression model involving the variance-inflation mechanism has the form

𝑦𝑖 = 𝛼 + ∑
𝑝
𝑗=1

𝑥𝑖,𝑗 𝛽𝑗 + 𝜈𝑖 𝜀𝑖 (2)

where 𝛼, 𝑥𝑖,𝑗 and 𝛽𝑗 are defined as in (1), 𝜀𝑖 is a normally-distributed error with mean zero mean and variance
𝜎2, and 𝜈𝑖 > 0 (𝑖 = 1, … , 𝑛) are idiosyncratic variance parameters expected to be one for mainstream instances
and larger than one for outliers. Under this model, outlier detection boils down to identifying the instances
with variance inflation values 𝑣𝑖 significantly larger than 1 [14]. A value of 𝜈𝑖 much less than one (or very close
to zero) indicates that 𝑦𝑖 is very close to 𝛼 + ∑𝑝

𝑗=1 𝑥𝑖,𝑗 𝛽𝑗. Model (2) can be compactly written in matrix form as
𝑦𝑦𝑦 = 𝛼1𝑛 + 𝑋𝑋𝑋𝛽𝛽𝛽 + 𝑉𝜀, where 𝑦𝑦𝑦 = [𝑦1, … , 𝑦𝑛]T is the n-vector of phenotypic trait values, 1𝑛 is the n-vector of ones,
𝑋𝑋𝑋 is the 𝑛 × 𝑝 matrix of genetic codes, 𝛽𝛽𝛽 = [𝛽1, … , 𝛽𝑝]

T
is the p-vector of genetic effects, 𝑉𝑉𝑉 = 𝑑𝑖𝑎𝑔 (𝑣𝑖) is the 𝑛 × 𝑛

diagonal matrix with individual-specific variance inflation terms on the main diagonal, and 𝜀 is the n-vector of
random error terms assumed to be normally distributed with mean zero and common variance 𝜎2.

The robust mean-shift outlier-handling mechanism can be incorporated in the multiple QTL mapping re-
gression model (1) as

𝑦𝑖 = 𝛼 + 𝑢𝑖 + ∑
𝑝
𝑗=1

𝑥𝑖,𝑗 𝛽𝑗 + 𝜀𝑖 (3)

where 𝛼, 𝑥𝑖,𝑗 and 𝛽𝑗 and 𝜀𝑖 are defined as in (1), and 𝑢𝑖 is the mean-shift term associated with the ith individual
(𝑖 = 1, … , 𝑛). The mean-shift 𝑢𝑖 is expected to be zero if 𝑦𝑖 is not an outlier and non-zero if 𝑦𝑖 is an outlier.
Since outliers are exceptions rather than the norm [10], the mean-shift vector 𝑢𝑢𝑢 = [𝑢1, … , 𝑢𝑛]T is fundamentally
sparse as most entries are expected to be zero, in contrast to the variance-inflation vector 𝑣𝑣𝑣 = [𝑣1, … , 𝑣𝑛]T

where most entries are expected to equal 1. In compact matrix notation, eq. (3) becomes 𝑦𝑦𝑦 = 𝛼111𝑛 + 𝑢𝑢𝑢 + 𝑋𝑋𝑋𝛽𝛽𝛽 +
𝜀𝜀𝜀, where 𝑦𝑦𝑦, 𝛽𝛽𝛽, 𝑋𝑋𝑋, 111𝑛, and 𝜀𝜀𝜀 are defined as in the matrix form of model (2), and 𝜀𝜀𝜀 ∼ 𝑁 (000, 𝜎2𝐼𝐼𝐼𝑛). In genome-
wide QTL mapping, the number 𝑝 of candidate markers is typically larger than the sample size 𝑛, meaning
that the phenotype-to-genotype regression model is generally oversaturated in the sense that it involves more
parameters than data points. However, it is expected that most of the markers will have very little or no effect
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on the phenotype, by virtue of the documented sparsity of genetic basic of quantitative traits. From a statistical
perspective, oversaturated models do not have enough degrees of freedom for parameter estimation by usual
techniques such as OLS, the only way out being the bet on the sparsity principle by assuming that most of the
effects are null. Since both the p-vector 𝛽𝛽𝛽 of genetic effects and the n-vector 𝑢𝑢𝑢 of mean-shifts are sparse, their
concatenation ̃𝛽 ̃𝛽 ̃𝛽 = [𝛽𝛽𝛽|𝑢𝑢𝑢] with ̃𝛽1, … , ̃𝛽𝑝 = 𝛽1, … , 𝛽𝑝 and ̃𝛽𝑝+1, … , ̃𝛽𝑝+𝑛 = 𝑢1, … , 𝑢𝑛 is sparse as well. Letting 𝑋𝑋𝑋
denote the 𝑛 × (𝑝 + 𝑛) matrix obtained by appending the 𝑛 × 𝑛 identity matrix 𝐼𝐼𝐼𝑛 to the design matrix 𝑋𝑋𝑋, eq. (3)
can be expressed in matrix form as

𝑦𝑦𝑦 = 𝛼111𝑛 +
∼
𝑋𝑋𝑋

∼
𝛽𝛽𝛽 + 𝜀𝜀𝜀 (4)

This model is inexorably oversaturated since the number (𝑝 + 𝑛) of regression coefficients, excluding the inter-
cept, exceeds the sample size 𝑛. Model (4) re-casts the QTL mapping and outlier detection into a single variable
selection problem. Given the inherent sparsity of the extended feature vector ̃𝛽 ̃𝛽 ̃𝛽, sparsity-inducing shrinkage
priors, particularly LASSO-type priors, can be used to provide a sparse model representation by shrinking
spurious QTL effects and redundant mean-shift terms towards zero to simultaneously map QTLs and identify
outlying phenotypic values.

In this paper, we introduce a Bayesian framework for simultaneous variable selection and outlier detection in
large-scale and potentially oversaturated regression models, with a focus on quantitative trait locus (QTL) in ex-
perimental crosses. The rationale of our new methodology is to insert the robust mean-shift outlier mechanism
into the multiple QTL mapping regression model and assign extended Bayesian LASSO (EBL) priors [15–17] on
the genetic effects and the mean-shift terms. The EBL priors on the mean-shift terms prevent potential outlying
phenotypic values from distorting the genotype-phenotype association, while allowing their detection as cases
with outstanding mean-shifts terms following the LASSO shrinkage. The concurrent prescription of EBL priors
on the genetic effects and the mean-shift terms allows us to rely on a single decision-rule for QTL identification
and outlier detection. We carry out extensive simulations to evaluate our new model, comparing its perfor-
mance to two alternatives with no outlier handling mechanism namely, the standard EBL with Gaussian errors
as proposed by Mutshinda and Sillanpää [15] and the ostensibly robust EBL-t assuming heavy-tailed Student-t
rather than Gaussian errors. We fit all three models to the same sets of outlier-contaminated and outlier-free
synthetic data replicates and evaluate their performance with regard to the root mean square error and the QTL
detection sensitivity. As an application to real-world data, we re-analyze the genetic basis of the time to heading
in two-row barley (Hordeum vulgare L.) using data from the North American Barley Genome Mapping Project.
At the outset, we fit our new model and the EBL to the barley data with actual phenotypic values. We then
introduce some outlying phenotypic values and fit the two models to the outlier-contaminated data to evalu-
ate our new model’s ability to map QTLs in the presence of outlying phenotypic values and simultaneously
identify the outlying cases.

2 Materials & Methods

2.1 Model specification

Our working model is the multiple QTL mapping regression model extended to incorporate mean-shift terms
according to eq. (3) i. e. 𝑦𝑦𝑦 = 𝛼111𝑛 +𝑢𝑢𝑢+𝑋𝛽𝑋𝛽𝑋𝛽+𝜀𝜀𝜀. In order to achieve robust QTL mapping in the presence of outlying
phenotypic values and concurrently identify the potential outliers, we independently assign EBL priors (see
below) on the genetic effects 𝛽𝑗 (𝑗 = 1, … , 𝑝) and the mean-shift terms 𝑢𝑖 (𝑖 = 1, … , 𝑛). For conciseness sake, we
only describe the EBL prior placed on the mean-shift parameters since the priors assigned on genetic effects
have the exact same structure, except for the indexing is on genetic markers rather than on individuals.

For each mean-shift parameter 𝑢𝑖 (𝑖 = 1, … , 𝑛), we assume that 𝑢𝑖|𝜎2
𝑖 ∼ 𝑁 (0, 𝜎2

𝑖 ) and 𝜎2
𝑖 |𝜆2

𝑖 ∼ 𝐸𝑥𝑝 (𝜆2
𝑖 /2) in-

dependently, where 𝜎2
𝑖 and 𝜆𝑖 > 0 represent respectively the variance and the regularization parameter specific

to the ith individual. The regularization parameter 𝜆𝑖 controls the degree of shrinkage experienced by 𝑢𝑖, with
large values of 𝜆𝑖 resulting in stronger shrinkage of 𝑢𝑖 towards zero and vice-versa. Following the EBL rationale
[15–17], each 𝜆𝑖 is factored as 𝜆𝑖 = 𝛿𝜂𝑖, where 𝛿 > 0 and 𝜂𝑖 > 0 determine respectively the overall sparsity level
of the mean-shift vector 𝑢𝑢𝑢 = [𝑢1, … , 𝑢𝑛]T and the degree of shrinkage specific to 𝑢𝑖. The hyper-parameters 𝛿 and
𝜂𝑖 are assigned priors and estimated from data alongside the other model parameters. The explicit separation
between the overall model sparsity and the distinctive degrees of shrinkage resulting from the factorization
𝜆𝑖 = 𝛿𝜂𝑖 of the idiosyncratic regularization parameters under the EBL causes LASSO to adaptively release the
shrinkage pressure on important parameters while inflexibly shrinking spurious ones towards zero [15, 16].
This differential shrinkage obviates the tuning of the regularization parameter, which remains a challenging
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issue in Bayesian shrinkage analysis [18, 19]. The EBL has been successfully applied with uninformative priors
on the hyper-parameters 𝛿 and 𝜂, including uniform priors [15, 16]. However, when prior information is avail-
able, there is no reason for not using it, and the ability to incorporate prior information is one of the attractive
features of Bayesian inference.

Since no shrinkage is required on the population intercept 𝛼 and the error variance 𝜎2, we use the non-
informative priors 𝛼 ∼ 𝑁 (0, 100) and 𝜎2 ∼ 𝐼𝐺 (0.1, 0.1), where 𝐼𝐺 (𝜑, 𝜔) denotes the inverse-Gamma distribu-
tion with parameters 𝜑 and 𝜔. The model specification is completed with explicit statements of priors on the
hyper-parameters 𝛿 and 𝜂𝑖 (𝑖 = 1, … , 𝑛). For the EBL priors on the genetic effects 𝛽𝑗 (𝑗 = 1, … , 𝑝), we denote the
counterparts of 𝛿 > 0 and 𝜂𝑖 > 0 by 𝜌 > 0 and 𝜅𝑗 > 0, respectively. We assign 𝐺𝑎 (1, 1) priors independently
on 𝛿 and 𝜌 and 𝑈𝑛𝑖𝑓 (0, 4) on 𝜂𝑖 and on 𝜅𝑗 independently for 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑝, where 𝐺𝑎 (𝜑, 𝜔) and
𝑈𝑛𝑖𝑓 (𝑎, 𝑏) denote respectively the Gamma distribution with mean 𝜑/𝜔 and variance 𝜑/𝜔2, and the Uniform
distribution over the interval (𝑎, 𝑏), 𝑏 > 𝑎. We elaborate on the rationale for choosing a prior of the form for 𝜂𝑖
and 𝜅𝑗 further on.

2.2 Model fitting and posterior inferences

We use Markov chain Monte-Carlo methods to simulate from the joint posterior which is not available in closed-
form. With the widespread of high-throughput sequencing technologies, the scalability of genetic mapping to
large datasets has become critically important. Standard MCMC algorithms such as the Gibbs sampler [20] and
the Metropolis-Hastings algorithm [21, 22] may be prohibitively slow in the presence of strongly correlated
parameters [[23], p. 567]. Hamiltonian Monte Carlo (HMC) [24] provides a valuable alternative to status quo
MCMC algorithms, with tremendous promises for faster mixing and better scalability to complex and high-
dimensional models owing to its more efficient exploration of the parameter space. HMC considers the target
log probability density and its gradient and then generates an extremely efficient Markov transition. While a
HMC sampler is difficult to set up, it is easy to implement through the Bayesian probabilistic language Stan
[25], with the default No-U-Turn sampler (NUTS) allowing fast exploration of the most important parts of the
parameter space, regardless of the covariance structure [26]. In this paper, we rely on HMC simulation via Stan.

Under the EBL, we expect the mean-shifts of outlying phenotypic values to undergo less shrinkage towards
zero relative to the bulk of data. The overall sparsity of the mean-shift vector𝑢𝑢𝑢 and the degree of shrinkage expe-
rienced by the bulk of mean-shift values are controlled by the “global” hyper-parameter 𝛿, whereas the idiosyn-
cratic hyper-parameters 𝜂𝑖 distinguish the outliers from the bulk of phenotypic values by being consistently less
than 1 for outliers and vice versa. On this premise, Mutshinda and Sillanpää [16] developed a fully Bayesian de-
cision rule for variable selection under the EBL, which boils down to the test of whether or not 𝜂𝑖 is less than 1.
In practice, one may define Bayes factors (BFs [27]) to provide a rule of thumb for hypothesis testing. Suppose
that prior distributions 𝑝(𝜂𝑖) are independently assigned to the hyper-parameters 𝜂𝑖 with some pre-specified
“outlier-ness” probability Pr (𝜂𝑖 < 1) = 𝑤 (the prior probability that 𝑦𝑖 is an outlier) which corresponds to prior
odds of 𝑤/ (1 − 𝑤) to 1 for any phenotypic value being an outlier (𝐻1) versus being consistent with the bulk of
data (𝐻0). Consequently, the Bayes factor, 𝐵𝐹𝑖

1,0, for outlier-ness of the ith phenotypic value is simply the ratio of
the posterior odds to the prior odds for 𝐻1. Choosing a prior of the form 𝑈𝑛𝑖𝑓 (0, 𝑤) , 𝑤 > 1 simplifies the com-
putation of the prior probabilities Pr (𝜂𝑖 < 1) and Pr (𝜂𝑖 ≥ 1) as Pr (𝜂𝑖 < 1) = 1/𝑤 and Pr (𝜂𝑖 ≥ 1) = (𝑤 − 1) /𝑤,
so that

𝐵𝐹𝑖
1,0 = (1 − 𝑤) Pr (𝜂𝑖 < 1|𝑑𝑎𝑡𝑎)

𝑤 Pr (𝜂𝑖 ≥ 1|𝑑𝑎𝑡𝑎) (5)

Since 𝑤 is predetermined, the key input in (4) is 𝑠𝑖 = Pr (𝜂𝑖 ⟨1| 𝑑𝑎𝑡𝑎), the posterior probability that the ith phe-
notypic value is an outlier, and this probability can be straightforwardly evaluated from MCMC samples as

Pr (𝜂𝑖 < 1|𝑑𝑎𝑡𝑎) = 1
𝑁 ∑

𝑁
𝑘=1

𝐼(𝜂𝑘
𝑖 < 1|𝑑𝑎𝑡𝑎) (6)

where N, (𝜂𝑘
𝑖 < 1|𝑑𝑎𝑡𝑎) and 𝐼 (.) denote respectively, the number of post burn-in MCMC samples, the kth post

burn-in posterior MCMC sample for 𝜂𝑖, and the indicator function taking the value 1 when its argument is true
and the value 0 otherwise.

The Bayes factor 𝐵𝐹1,0 for hypothesis 𝐻1 versus 𝐻0 is usually interpreted against the Jeffreys’ scale of evi-
dence [28]. On the Jeffreys’ scale, as slightly amended by Kass and Raftery [27], 𝐵𝐹1,0 < 1 indicates a negative
support for 𝐻1 (support for 𝐻0), 1 ≤ 𝐵𝐹1,0 < 3 indicates a support for 𝐻1 that is “not worth more than a bare
mention”, 3 ≤ 𝐵𝐹1,0 < 20 indicates a positive support for 𝐻1, whereas 20 ≤ 𝐵𝐹1,0 < 150 and 𝐵𝐹1,0 ≥ 150 indicate
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respectively a strong and a very strong support for 𝐻1. Based on this scale of evidence, we consider 3 as cut-off
Bayes factor for outlier and QTL detection in the simulation study and the real data analysis, noting that, under
the prior Pr (𝜂𝑖 < 1) = 0.25 assumed here, 𝐵𝐹𝑖

1,2 ≥ 3 is equivalent to 𝑠𝑖 = Pr (𝜂𝑖 < 1|𝑑𝑎𝑡𝑎) ≥ 0.5. Similarly,
we assume that Pr (𝜅𝑗 < 1) = 0.25 a priori for QTL presence at any locus j so that 𝐵𝐹𝑗

1,0 ≥ 3 corresponds to
𝑟𝑗 = Pr(𝜅𝑗 < 1|𝑑𝑎𝑡𝑎) ≥ 0.5.

3 Report on the simulation study

In this section, we report on a simulation study designed to evaluate our new model by comparing its per-
formance to two alternatives namely, the standard EBL with Gaussian residuals [15] and a seemingly robust
version of the EBL, herein the EBL-t, assuming heavy-tailed Student-t rather than Gaussian errors. For com-
putational convenience, we parameterize the Student-t distribution as a scale mixture of normal distributions
with scaled-inverse 𝜒2 mixing variances [29, 30]. More specifically, if 𝑍|𝜎2 ∼ 𝑁 (0, 𝜎2) and 𝜎2 ∼ 𝐼𝐺 (𝑣/2, 𝑣/2),
then 𝑍 ∼ 𝑡𝑣, where 𝑡𝑣 denotes the Student-t distribution with 𝑣 degrees of freedom. In the EBL-t model, we
pick 𝑣 = 5, which is small enough to guarantee the heavy tailed-ness of the ensuing Student-t distribution.
Before delving into the details of the data simulation process and subsequent analyses, we start by describing
the outlier-labelling rule and the model performance measures considered here.

3.1 Outlier labeling rule

A commonly used outlier labeling procedure is the “𝑘 standard deviation rule” where any observation be-
yond k standard deviations from the mean value for a specific 𝑘 > 0 is flagged as an outlier. However, this
approach is only sensible when the data distribution is approximately normal. The inter-quartile range multi-
plier (IQRM) approach pioneered by Tukey [30] provides a valuable alternative to the 𝑘 standard deviation rule.
This approach involves finding the inter-quartile range IQR = 𝑄3 − 𝑄1 of the data, where 𝑄1 and 𝑄3 denote
respectively the first and the third quartile of the data distribution. Multiplying the IQR by a tuning parameter
𝑔 we define the range [𝑄1 − 𝑔 × IQR, 𝑄3 + 𝑔 × IQR] outside of which observations are flagged as outliers. This
method is applicable to data with skewed or non bell-shaped distributions, providing the sample size is not
too small. In keeping with Tukey [31], we use 𝑔 = 1.5 for outlier labeling in the simulation study.

3.2 Performance measures for model evaluation

We consider two performance measures for model evaluation namely, the root mean square error and the QTL
detection sensitivity, which are briefly described below.

3.2.1 The root mean squared error

The root mean squared error is defined as 𝑅𝑀𝑆𝐸 = √ 1
𝑛 ∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦𝑖)
2, where 𝑦𝑖 is the observed value of

the response variable for the ith individual (𝑖 = 1, 2, … , 𝑛) and 𝑦𝑖 the model fitted counterpart defined by
𝑦𝑖 = ̂𝛼 + ̂𝑢𝑖 + 𝑋𝑋𝑋 ̂𝛽 ̂𝛽 ̂𝛽𝑖𝑖𝑖 when the model involves mean-shift terms ore 𝑦𝑖 = ̂𝛼 + 𝑋𝑋𝑋 ̂𝛽 ̂𝛽 ̂𝛽𝑖𝑖𝑖 otherwise.

3.2.2 QTL detection sensitivity

Sensitivity quantifies the avoidance of false negatives whereas specificity does the same for false positives. Let
TP and TN denote respectively the proportions of QTL loci (positives) and the proportion of non-QTL loci
(negatives) correctly identified as such, and let also FP and FN denote respectively, the proportion of negatives
predicted to be positives and the proportion of positives predicted to be negatives. A model with high QTL
detection accuracy is expected to have high TP and TN and low FP and FN, resulting in high QTL detection
sensitivity Sn = TP/ (TP + FN) and specificity Sp = TN/ (TN + FP). Since oversaturation (𝑝 > 𝑛) typically
induces low TP and high FN, we consider QTL detection sensitivity as performance measure for QTL detection
ability. It is worth mentioning that when mapping QTLs using tight marker maps, inherent high dependencies

5
Brought to you by | Dalhousie University

Authenticated | a.irwin@dal.ca author's copy
Download Date | 2/17/20 5:07 PM

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Mutshinda et al. DE GRUYTER

between genotypes of nearby markers may cause adjacent markers to QTLs loci to emerge instead of the actual
QTL loci [32, 33], and these should not be considered as false positives.

3.3 Data simulation and statistical analyses

We generate synthetic phenotypic data replicates using a dense marker dataset simulated through the WinQTL
Cartographer 2.5 program [34], and involving 1000 markers for 100 backcross progeny (10 times as many mark-
ers as individuals). The markers span two chromosomes with 500 markers each and only 1 cM gap between
consecutive markers, implying a high level of correlation between adjacent markers. We generate the pheno-
typic values from the regression model 𝑦𝑦𝑦 = 𝛼111𝑛 + 𝑢𝑢𝑢 + 𝑋𝑋𝑋𝛽𝛽𝛽 + 𝜀𝜀𝜀 with 𝛼 = 0, 𝜀𝜀𝜀 ∼ 𝑁 (000, 𝜎2𝐼𝐼𝐼𝑛), and 𝜎 = 1, assuming
sparse underlying biology involving just six QTLs at loci 25, 202, 451, 633, 815 and 986 with respective QTL
effects as 𝛽25=−3, 𝛽202 = 2, 𝛽451 = 2, 𝛽633 = 3, 𝛽815 = −3, 𝛽986 = 2, and 𝛽𝑗 set to zero for the rest of loci. To
generate outlier-contaminated phenotypic data (scenario 1), we set all entries of the mean-shift vector u to zero,
except for five individuals, namely individual number 9, 37, 58, 71 and 83 selected to have outlying phenotypic
values, and whose mean-shifts are uniformly drawn between 10 and 12. In order to assess potential statistical
losses incurred by fitting our new robust model to outlier-free data, we also generate outlier-free phenotypic
values (scenario 2) assuming the same model and same QTL effects as in the scenario 1, but with all mean-
shifts 𝑢1, … 𝑢𝑛 set equal to zero (no outlier). Figure 1 shows a histogram, a boxplot and a normal Q-Q plot of
representative phenotypic data replicates under scenarios 1 (bottom) and 2 (top).

Figure 1: Histogram, boxplot and normal Q-Q plot of a typical outlier-free (top) and a typical outlier-contaminated (bot-
tom) phenotypic data replicate.

The boxplot of the outlier-contaminated phenotypic data (Figure 1, bottom center panel) shows the five simu-
lated outliers clearly standing out from the bulk. We generated 20 synthetic data replicates under each scenario,
fit the three models (our new model, the EBL-t and the EBL) to each data replicate, and evaluate the root mean
squared error (RMSE) and the QTL detection sensitivity (Sn) for each model over the simulated data replicates.

3.4 Simulation results

We used Hamiltonian Monte Carlo, through Stan (Stan Development Team, 2018), to simulate from the joint
posterior distribution of the model parameters. At the outset, we ran 6000 iterations of three Markov chains.
The approximate running time was 40 minutes on a personal computer equipped with a 64-bit CORE i5 Intel
processor @ 2.50 Hz. After about 1000 iterations, the chains reached the target distribution and mixed well,
jumping freely around the parameter space. During the simulation study, we ran a single MCMC for 4000
iterations and discarded the first 2000 iterations as burn-in, thinning the remainder by a factor of 5. The results
based on our new model clearly separate QTLs form non-QTL loci on the one hand (Figure 2(a)) and outlying
phenotypic values from the bulk on the other hand (Figure 2(c)).
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Figure 2: Posterior means of (a) genetic effects, (b) QTL presence probabilities, (c) mean-shift terms, and (d) outlier-ness
probabilities averaged over 20 synthetic outlier-contaminated data replicates for our new model. The dashed horizontal
lines in the lower panels indicate the posterior probability cut-off value 0.5 for QTL and outlier detection corresponding
to a Bayes factor of 3 under our prior assumption.

In addition, the posterior means of QTL presence and outlier-ness probabilities shown in panels 2b and 2d
respectively are way beyond the detection threshold for the simulated QTL loci and the outlying phenotypic
values. However, the LASSO shrinkage on genetic effects tends to be excessively strong under the two models
with no outlier detection mechanism (the EBL-t and the EBL), irrespective of whether or not a locus harbours
a QTL for the quantitative trait of interest (Figure 3(a), (c)). As a result, QTL loci tend to go undetected under
these two models, particularly when the magnitude of the genetic effect is low.

Figure 3: Posterior means of genetic effects for the EBL-t (a) and the EBL (c) and posterior means of QTL presence prob-
abilities for the EBL-t (b) and the EBL (d) averaged over 20 synthetic outlier-contaminated data replicates. The dashed
horizontal lines in the lower panels indicate the posterior probability cut-off value 0.5 for QTL detection corresponding to
a Bayes factor of 3 under our prior assumption.

Our proposed model outperforms the EBL-t and the EBL on outlier-contaminated data (under scenario 1) with
regard to all performance measures under consideration, standing out with lower root mean squared error and
higher QTL detection sensitivity (Table 1).
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Table 1: Performance measures namely, the root mean squared error (RMSE) and the QTL detection sensitivity (Sn) av-
eraged over 20 simulated outlier-contaminated data replicates for the three models under consideration namely, our new
model, the EBL and the EBL-t.

Scenario Model RMSE Sn (%)(%)

Scenario 1 NewModel 0.43 97
Outlier-contaminated EBLt 4.50 58
phenotypes EBL 2.63 61

On outlier-free data, our model neatly separates QTLs from non-QTL loci, with the simulated QTL loci standing
clearly out with posterior means of genetic effects largely different from zero (Figure 4(a)) and QTL presence
probabilities far beyond the detection threshold 0.5 corresponding to a Bayes factor 3 under our prior assump-
tion (Figure 4(b)). Interestingly, all mean-shift terms undergo a stringent shrinkage towards zero on outlier-free
data under our new model (Figure 4(c)), preventing any phenotypic value from emerging as an outlier, and
confining the posterior outlier-ness probabilities well below the outlier detection threshold (Figure 4(d)).

Figure 4: Posterior means of (a) genetic effects, (b) QTL presence probabilities, (c) mean-shift terms, and (d) outlier-ness
probabilities averaged over 20 synthetic outlier-free data replicates for our new model. The dashed horizontal lines in the
lower panels indicate the posterior probability cut-off value 0.5 for QTL and outlier detection corresponding to a Bayes
factor of 3 under the assumed priors.

On outlier-free data replicates, the posterior means of genetic effects are significantly different from zero and
the posterior QTL presence probabilities are largely beyond the QTL detection threshold for the six simulated
QTLs under both the EBL-t and the EBL (Figure 5).
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Figure 5: Posterior means of genetic effects for the EBL-t (a) and the EBL (c) and posterior means of QTL presence prob-
abilities for the EBL-t (b) and the EBL (d) averaged over 20 synthetic outlier-free data replicates. The dashed horizontal
lines in the lower panels indicate the posterior probability cut-off value 0.5 for QTL detection corresponding to a Bayes
factor of 3 under our prior assumption.

On outlier-free data, the posterior means of genetic effects and QTL presence probabilities for the EBL-t and the
EBL displayed in Figure 5 are broadly similar to corresponding estimates under our new model (Figure 4(a),
(b)). The performance measures are also similar between the three models, with our new model and the EBL
achieving nearly 100 % QTL detection sensitivity and low RMSEs (Table 2).

Table 2: Performance measures namely, the root mean squared error (RMSE) and QTL detection sensitivity (Sn) averaged
over 20 simulated outlier-free data replicates for the three models under consideration (our new model, the EBL and the
EBL-t).

Scenario Model RMSPE Sn (%)

Scenario 2 NewModel 0.44 98
Outlier-free EBLt 0.47 93
phenotypes EBL 0.40 98

With the prevalence of high-throughput genotyping and sequencing technologies, the scalability of genetic
mapping procedures to large data has become an important issue. We examined the time complexity for our
new model relative to the standard EBL. We fitted both models to the same sets of synthetic data replicates
with gradually increasing number of markers and monitored the running time of each model. The plot of the
average running time against the number of markers displayed in Figure 6 is roughly linear in the number of
markers for both models, implying a time complexity of 𝑂 (𝑛).

9
Brought to you by | Dalhousie University

Authenticated | a.irwin@dal.ca author's copy
Download Date | 2/17/20 5:07 PM

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Mutshinda et al. DE GRUYTER

Figure 6: Running time (in hours) against the number of markers (in hundreds) on outlier-contaminated data for our new
robust model (black filled circles) and the EBL (grey filled squares).

Our analysis demonstrates the value of Hamiltonian Monte Carlo as a fast and scalable alternative to status quo
Markov chain Monte Carlo techniques such as the Gibbs sampler [20] and the Metropolis-Hastings algorithm
[21, 22].

Linkage analysis (QTL mapping) and association analysis refer to two different ways of mapping QTLs
for target phenotype. The former is usually performed either using inbred line crosses or sets of known rela-
tives whereas the latter, also known as “linkage disequilibrium mapping”, takes advantage of historic linkage
disequilibrium to link phenotypes to genotypes using dense marker maps, with a view to uncovering genetic
associations in sets of largely unrelated individuals. Association mapping usually considers high marker den-
sity to map QTLs to a fine resolution. However, association mapping suffers from a number of drawbacks
including: (1) the dependence of the power of detecting QTLs on allele frequencies, reflected in a lack of power
to detect rare alleles. (2) A high sensitivity to population structure, leading to many false positives if population
structure is not properly accounted for. (3) Scalability issues due to the high dimensionality of the feature space
in contrast to linkage mapping which generally relies on few hundreds to few thousands markers. We tailored
our methodology to linkage mapping by focusing on experimental crosses to avoid dealing with the range of
issues associated with association mapping. However, the methodology is applicable to association mapping
as well. Scalability to ultra-high dimensional feature spaces may be achieved by resorting to sure independence
screening (SIS), a two-stage learning approach due to Fan and Lv [35], whereby a large-scale screening is first
applied to reduce the model dimensionality from p features to a moderate number 𝑑 < 𝑛, where 𝑛 is the sample
size 𝑛. SIS involves the ranking of the initial p features in decreasing order of their association measures with
the response variable, 𝑦, typically ∣𝑐𝑜𝑟 (𝑦𝑦𝑦,𝑥𝑥𝑥𝑗)∣ or ∣𝛽𝑗∣ and retaining the top d covariates with the largest marginal
association values with y. Inference is then conducted on the reduced feature space [35, 36]. Fan and Lv [35]
showed that such a ranking of features possesses the sure independence screening property, meaning that it
retains the important variables in the model with probability very close to 1.

4 Real data analysis

In this section, we re-analyze the genetic basis of the time (number of days) to heading in two-row barley
(Hordeum vulgare L.) using real data from the North American Genome Mapping project [37, 38]. The barley
data involve the phenotypes (days to heading) of 145 double haploid (DH) progenies, along with their geno-
types at 127 markers covering seven chromosomes with a 10.5 cM gap between consecutive markers. To remain
in the 𝑝 > 𝑛 setting, we only consider a subset of 100 individuals randomly selected without replacement among
the 145 progenies in the barley data. The empirical distributions of the restricted and the full phenotypic data
are comparable as expected since the former is a simple random sample from the latter. We first analyzed the
data with the actual barley phenotypic data using our new model and the EBL. We then introduced a few out-
lying phenotypic values and analyzed the outlier-contaminated data using the two models. We generated the
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outlier-contaminated phenotypic data by replacing the phenotypic values of progeny 7, 48, and 83 by random
numbers uniformly drawn on the interval [Q3 + 2 × IQR, Q3 + 3 × IQR] where Q3 and IQR denote respectively
the third quartile and the inter-quartile range of the phenotypic data under consideration. Figure 7 shows the
histograms, boxplots and normal Q-Q plots of the outlier-free (top panels) and outlier-contaminated (bottom
panels) phenotypic data.

Figure 7: Histograms, boxplots and normal Q-Q plots of the outlier-free (top) and outlier-contaminated (bottom) barley
phenotypic values.

We carried out the model fitting to data by MCMC simulation via Hamiltonian Monte Carlo implemented in
Stan, under the prior probabilities Pr (𝜅𝑗 < 1) = 0.20 for QTL presence at any locus and Pr (𝜂𝑖 < 1) = 0.20
for any of the phenotypic values being an outlier. These prior assumptions correspond to prior odds of 1 to 4
for QTL presence at any locus and for any of the phenotypic values being an outlier. We ran 10,000 iterations
of three parallel Markov chains following a burn-in period of 4,000 iterations, and thinned the post burn-in
MCMC samples by a factor of 25. The posterior means of the QTL effects and QTL presence probabilities for
the new model and the EBL are similar on outlier-free data. The two models identified roughly the same set of
loci as QTLs namely, locus 5, 10, 47, 59, 63, 86, 112, 119 and 120 (Figure 8), consistent with previous analyses of
the genetic basis of time to heading in barley using the original phenotypic trait values [15, 16, 38].

Figure 8: Posterior means of the QTL effects for our new model (top-left) and the EBL (top-right), and posterior means of
QTL presence probabilities for our new model (bottom-left) and the EBL (bottom-right) on outlier-free data. The dashed
horizontal lines in the lower panels indicate the posterior probability cut-off for declaring QTLs, which corresponds to a
BF of 3 under the 1:3 prior odds for QTL presence assumed here.
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While our new model identified roughly the same QTLs on outlier-contaminated and on outlier-free data (Fig-
ure 9, left panels) more than half of the presumed QTL loci on outlier-free data under the EBL went undetected
as outliers were introduced (Figure 9, right panels).

Figure 9: Posterior means of the QTL effects for our new model (top-left) and the EBL (top-right), and posterior means
of QTL presence probabilities for our new model (bottom-left) and the EBL (bottom-right) on outlier-contaminated data.
The dashed horizontal lines in the lower panels indicate the posterior probability cut-off for declaring QTLs, which corre-
sponds to a BF of 3 under the 1:3 prior odds for QTL presence assumed here.

Turning to the outlier identification aspect of our new model, the stringent shrinkage of all mean-shift terms
towards zero on outlier-free data (scenario 1) caused their magnitudes to be virtually zero a posteriori (Figure
10, top-left panel). In addition, all posterior outlier-ness probabilities were constrained to much lower values
than the outlier detection threshold (Figure 10, bottom-left panel), thereby preventing false outlier detection.
Likewise, the mean-shift terms associated with non-outlying cases underwent a stringent shrinkage towards
zero on outlier-contaminated data, while the five simulated outliers stood out with posterior mean-shift values
way larger than zero (Figure 10, top-right panel) and posterior outlier-ness probability far beyond the detection
threshold (Figure 10 bottom-right panel).

Figure 10: Posterior outlier-ness probabilities for our new model under the two scenarios, with the dashed horizontal
lines in the bottom panels indicating the posterior probability cut-off for declaring outliers which, under the 1:3 prior
odds for any phenotypic value being an outlier assumed here, corresponds to a BF of 3.
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Overall, the barley data analysis corroborates the effectiveness of our new approach for robust QTL mapping
with simultaneous outlier detection at a relatively low computational cost.

5 Discussion

In this paper, we introduced a Bayesian framework for concurrent feature selection and outlier detection in
sparse high-dimensional regression, with a focus on QTL mapping in experimental crosses. The rationale of
our methodology is to integrate the robust mean-shift outlier handling mechanism into the regression model
for multiple QTL mapping, and prescribe LASSO shrinkage on the genetic effects and the mean shift terms
using the flexible extended Bayesian LASSO (EBL) prior, which provides much flexibility with regard to vari-
able selection. The EBL priors assigned to the mean-shift terms precludes outlying phenotypic values from
misrepresenting the genotype-phenotype association, while allowing their detection as cases with outstanding
mean shift values following the LASSO shrinkage. The concurrent prescription of EBL priors on the genetic
effects and the mean-shift allowed us to rely on a single decision rule for QTL identification and outlier detec-
tion, with hypotheses tests for QTL identification and outlier detection following as by-products of the MCMC
model fitting process [16].

We carried out extensive simulations to evaluate our model, comparing its performance on synthetic
outlier-contaminated and on outlier-free data to the EBL and the ostensibly robust EBL-t assuming heavy-
tailed Student-t rather than Gaussian errors. Our new model outperformed the EBL and the EBL-t on outlier-
contaminated data, standing out with lower mean squared errors and higher QTL detection sensitivity, and
effectively detected the simulated outliers. Interestingly, our new model performed comparably to the EBL and
the EBL-t on outlier-free data with the LASSO inflexibly shrinking all mean shift terms towards zero (Figure
4(c) and Figure 10, top-left panel).

We analyzed the genetic basis of the time to heading in two-row barley (Hordeum vulgare L.) using data from
the North American Genome Mapping project, with the standard EBL serving as benchmark for performance
evaluation. The barley genetic data involve 127 markers for 145 double haploid individuals. In order to remain
in the (𝑝 > 𝑛) setting, we considered a sample of 100 individuals. We first fitted our new model and the EBL to
the data with actual phenotypic trait values. We then introduced three outlying phenotypic values and fitted
the two models to the outlier-contaminated data. The results substantiated the ability of our new model to
provide robust QTL mapping in the presence of outlying phenotypic values and identify the potential outliers.
The QTL mapping results on outlier-contaminated data and outlier-free data were comparable under our new
model, and consistent with findings of previous analyses of the barley data under consideration [15, 16, 38],
corroborating the robustness of our proposed model to the presence of outliers. While the posterior estimates of
QTL effects and QTL presence probabilities were comparable between our new model and the EBL on outlier-
free data, most of the QTLs detected under the EBL on outlier-free data (Figure 8) went undetected in the
presence of outliers (Figure 9).

Robust regression and outlier detection in a high-dimensional regression set-up are fundamental problems
in statistics with several applications across disciplines. Generally, robust regression focuses on estimating
regression coefficients in the presence of outliers without necessarily localizing the potential outliers. A docu-
mented approach to robust regression is to replace the normality assumption on the error terms by heavy-tailed
alternatives, typically the Student-t distribution or the Laplacian or Double Exponential distribution [39]. The
use of thick-tailed distributions for robust prediction of complex trait has a long history in the animal breeding
literature [40–46]. Gianola et al. [40] present a robust alternative to best linear unbiased prediction for genomic
prediction purposes, which involves a linear model with Student-t or Laplace rather than Gaussian errors.
However, Lambert-Lacroix and Zwald [47] emphasize that for normally distributed data, models assuming
heavy-tailed residual distributions such as the Student-t or the Laplace tend to be less efficient than mean-
shifted models with normally distributed errors, which may explain the poor performance of the EBL-t relative
to the robust model proposed here.

Variable selection in sparse high-dimensional regression models and outlier detection through mean shift-
ing are both sparse model representation problems. Our new methodology integrates these two problems into
a single sparse robust regression model and tackles them concurrently from a Bayesian regularization perspec-
tive using the flexible EBL prior and its attendant decision rule for variable selection [16].

The prevalence of next-generation sequencing has led to an explosion in marker number, raising new mod-
eling and computational challenges in linkage studies [48]. With high-density marker data, the genotypes of
consecutive markers tend to co-vary widely. However, LASSO selects a single variable from a group of strongly
correlated predictors [40]. In practice, it may be desirable to account for all potential predictors particularly in
genomic selection based on dense molecular markers, which entails estimating the simultaneous effects of all
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genes and combining the estimates to predict the total genomic breeding value [49–51]. An extension of the
model proposed here with the 𝐿2 constraint on the vector 𝛽 of genetic effects may be required according to the
elastic net method [52] or the approach of Xu [53] to promote a grouping effect.

It is worth emphasizing that outliers do not necessarily represent flawed data. Atypical instances may be the
focus of interest in applications from various domains including genetics, bioinformatics, finance, climate, etc.
The model proposed here provides, in combination with Hamiltonian Monte Carlo simulation, an expedient
approach to robust analysis of sparse high-dimensional regression models in an effective and scalable manner.

Two words of caution are in order before closing this discussion. (1) The simulated data may not be rep-
resentative of the large data sets typically encountered by plant and animal breeders. (2) The magnitude of
simulated outliers were chosen to be sizably large for illustration purposes. Nevertheless, our analyses provide
proof-of-concept for the robust mean-shift EBL model introduced here. It is up to the scientific community to
assess its value in real-world situations.
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