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Zooplankton play a crucial role in marine ecosystems as the link between the

primary producers and higher trophic levels, and as such they are key

components of global biogeochemical and ecosystem models. While

phytoplankton spatial-temporal dynamics can be tracked using satellite

remote sensing, no analogous data product is available to validate zooplankton

model output. We develop a procedure for linking irregular and sparse

observations of mesozooplankton biomass with model output to assess

regional seasonality of mesozooplankton. We use output from a global

biogeochemical/ecosystem model to partition the ocean according to

seasonal patterns of modeled mesozooplankton biomass. We compare the

magnitude and temporal dynamics of the model biomass with in situ

observations averaged within each partition. Our analysis shows strong

correlations and little bias between model and data in temperate, strongly

seasonally variable regions. Substantial discrepancies exist between model and

observations within the tropical partitions. Correlations between model and data

in the tropical partitions were not significant and in some cases negative.

Seasonal changes in tropical mesozooplankton biomass were weak, driven

primarily by local perturbations in the velocity and extent of currents.

Microzooplankton composed a larger fraction of total zooplankton biomass in

these regionsWe also examined the ability of the model to represent several

dominant taxonomic groups. We identified several Calanus species in the North

Atlantic partitions and Euphausiacea in the Southern Ocean partitions that were

well represented by the model. This partition-scale comparison captures

biogeochemically important matches and mismatches between data and

models, suggesting that elaborating models by adding trait differences in larger

zooplankton and mixotrophy may improve model-data comparisons. We

propose that where model and data compare well, sparse observations can be

averaged within partitions defined from model output to quantify zooplankton

spatio-temporal dynamics.
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1 Introduction

Zooplankton perform key ecosystem services and are a critical

component of biogeochemical fluxes in the pelagic ocean. They are

the primary vectors in the transfer of organic carbon produced by

phytoplankton from the uptake of CO2 to higher trophic levels

(Marquis et al., 2011) and play an important role in biogeochemical

cycles, regulating carbon sequestration in the deep ocean as part of

the biological carbon pump. They do this in a number of ways from

the passive sinking of organic detritus and faecal pellets (Turner,

2015), fragmenting sinking particles through grazing (Cavan et al.,

2017), and through the active daily migrations (Steinberg et al.,

2000; Archibald et al., 2019) or seasonal deep-ocean overwintering

in higher latitudes (Jónasdóttir et al., 2015). Limited availability of

suitable data and complexity within zooplankton communities has

made parameterization of key processes performed by this group

particularly challenging to include in biogeochemical models

(Giering et al., 2019).

Marine biogeochemical models describe the flow of elements

between the biogeochemical compartments, such as Nutrients,

Phytoplankton, Zooplankton and Detritus (NPZD, Edwards,

2001). Model evolution is determined by differential equations

that parameterize the controls on phytoplankton growth (e.g.

nutrient, light), zooplankton grazing, plankton mortality, and

remineralization of organic matter back to inorganic nutrients. In

most current global scale biogeochemical models, zooplankton are

the highest trophic level explicitly modelled and as a result they are

key in limiting blooms of phytoplankton and their parameterization

is important for the rate of production of detritus (Steele and

Henderson, 1992) and export of carbon. Historically, zooplankton

has often been the poorest performing group when validating

models with in situ data (Arhonditsis and Brett, 2004).

Zooplankton parameterization and estimates likely suffer more

than phytoplankton due to the enhanced complexity of their

behavior and life history strategies. The productivity and diversity

estimated by models are quite different depending on the specific

rates and type of parameterization chosen for the zooplankton (see

e.g. Vallina et al., 2014; Prowe et al., 2012; Chenillat et al., 2021;

Karakus ̧ et al., 2022). However, there has in general been a lack of

data with which to ascertain which of several model outcomes of

zooplankton biomass is most plausible.

Evaluating zooplankton performance within biogeochemical

models is difficult due to the mismatch between the regular

gridded output of a model and the irregular sampling distribution

and methodologies of zooplankton observations (Everett et al.,

2017). The number of zooplankton sampling nets or devices

available are manifold, each with their own specific trade-offs in

sampling and operational efficiency. These vary across the

traditional vertical or obliquely towed nets (e.g. – WP2), multi-

nets for depth stratified sampling (e.g. – MOCNESS, Wiebe et al.,

1985) and highspeed samplers (e.g. – CPR, Richardson et al., 2006).

In addition, mesh sizes will also vary in accordance with the

sampling area or target groups (Sameoto et al., 2000). To produce

a reliable database of zooplankton biomass, a significant amount of

quality control and standardization is needed before any

comparison between model and data can take place (Moriarty
Frontiers in Marine Science 02
and O’Brien, 2013). Even with the collation of global zooplankton

datasets there is a large disparity in the spatial coverage of

measurements in the ocean with over 81% of observations in

temperate latitudes of the northern hemisphere (Ratnarajah et al.,

2023). Aggregating these data onto an appropriate grid and

temporal scale to match the biogeochemical model will result in

large swathes of the ocean with little or no coverage.

There is a critical need to develop and test models of

zooplankton biomass dynamics in our oceans (Everett et al.,

2017). Here, we develops a method that addresses the two

primary issues that are encountered when assessing the model

performance of zooplankton in biogeochemical models. The first

stage deals with standardizing the available zooplankton

observat ions by convert ing abundance and biomass

measurements from different platforms and net types into

comparable units. The second stage deals with the spatial

component where the gridded model and irregularly sampled

field data are combined by partitioning the ocean into regions

defined by a set of biotic and abiotic conditions. One of the most

commonly used partitions is the Longhurst Biogeochemical

Provinces (Longhurst, 2007) which used key biogeochemical

parameters to delineate the main oceanographic regions. Global-

scale satellite data and biological databases have allowed for

partitioning of the ocean to be driven by objective classifications

based on physical, chemical, or biological data (i.e., temperature and

ocean color, Oliver and Irwin, 2008; community composition,

Beaugrand et al., 2019; Elizondo et al., 2021).

We develop an ocean partition framework to facilitate the

assessment of zooplankton model output with our standardized

zooplankton observations. We use output from the MIT Darwin

biogeochemical-ecosystem model (Dutkiewicz et al., 2015) which

predicts zooplankton biomass fluctuations globally. We partition

the ocean by identifying areas where the seasonal cycle varies

consistently and distinctly compared to other areas. Differences in

phenology, frequency and magnitude of zooplankton biomass

fluctuations over a year are used to partition the ocean. We use

data collected in-situ many research cruises and net types. Data

come largely in the form of biomass and volumetric measurements

of zooplankton which are standardized to a common metric of

biomass to be compared with the model output. Our method for

partitioning of the ocean is designed to address the challenge of data

sparsity in data-model comparisons
2 Methods

We used output from the MIT Darwin model (Dutkiewicz et al.,

2015) as an illustration of our method. We gathered a large

collection of field observations of zooplankton and standardized

observations to the same biomass units. Given the sparsity of the

data, we addressed model skill not point to point, but within

partitions. Partition were defined based on seasonality of the

modelled zooplankton biomass. The modelled and in-situ

zooplankton biomass measurements were aggregated within each

partition and time intervals to create two time series to enable

comparison of their average seasonal dynamics. We propose and
frontiersin.org
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test several assessments that allow for temporal and geographic

mismatch between data and model to be quantified at the

global scale.
2.1 Zooplankton observations

Global mesozooplankton biomass data were extracted from the

Coastal and Oceanic Plankton Ecology, Production, and

Observation Database (COPEPOD, O’Brien, 2007) and the

Continuous Plankton Recorder (CPR, Richardson et al., 2006).

COPEPOD is repository of zooplankton biomass data derived

from sampling programs and individual cruises with the earliest

collected in 1932. Sample availability increased significantly in the

1950’s and remained relatively consistent over time (Figure 1). The

CPR is the largest marine survey in the world having sampled near

surface (~10 m) plankton behind ships of opportunity across 7

million nautical miles of ocean since 1931, though our earliest

samples were collected in 1948. While much of the data comes from

the North Atlantic, the survey has expanded through the

development of sister surveys to other areas including the North

Pacific (Batten et al., 2006) and the Southern Ocean (Hosie et al.,

2003). As a result, we see an increase in the number of CPR

observations over the last 20 years (Figure 1). A wide array of

different methodologies has been used to quantify total zooplankton

biomass in the COPEPOD database including accounting for

different mesh sizes, depths sampled and biomass calculation (e.g.

– settled volume, dry weight etc.). We followed the two-step

approach outlined in Moriarty and O’Brien (2013) beginning by

converting observations to carbon mass (g C m-3) (Supplementary

Table 1). The second step standardizes observations collected with

many different mesh sizes to approximate a 333 µm mesh
Frontiers in Marine Science 03
equivalent using conversion equations developed by O’Brien

(2005) (Supplementary Table 1). COPEPOD includes both

vertical net tows and stratified sampling at different depths. We

restricted our samples to those collected in the upper 100 m

(Figure 1; n = 209, 688). CPR data are represented as species

abundances which require a conversion to dry weight of an

individual using length – weight regression equations (see

Supplementary Tables 1, 2 for length measurements used) which

are then converted to carbon mass (Figure 1; n = 264, 512)

(Figure 2A). While the CPR mesh size (270 µm) differs from the

333 µm mesh equivalent, we were unable to perform the same mesh

size standardization due to the lack of direct time and date matches

in both datasets. We studied the consequence of combining both

datasets in areas where both COPEPOD and CPR data were

collected through analyses of each dataset separately and combined.
2.2 Modelled zooplankton

Modelled zooplankton biomass (mg C m–3) was obtained from

the MIT Darwin biogeochemical-ecosystem model (Dutkiewicz

et al., 2015). The model characterizes the cycling of carbon,

nitrogen, phosphorous, silica, iron and oxygen through a system

of organic (phytoplankton, zooplankton, detritus) and inorganic

pools. The model parameterized the different pools in terms of

concentration, and as such plankton are tracked in terms of carbon

biomass (mg C m–3). The movement and mixing of the biological

and chemical tracers were driven by the MIT general circulation

model. In this version of the model, zooplankton were resolved to

two generalized size classes (large and small) that prey preferentially

on different phytoplankton classes within the model. We selected

the large zooplankton to represent the mesozooplankton biomass
FIGURE 1

(top) The global distribution of surface (0-100 m) mesozooplankton biomass measurements from the COPEPOD database (black dots; n = 209,688)
and samples taken from the Continuous Plankton Recorder (red dots; n = 264,512). Also shown is the sample frequency for each year for both the
COPEPOD (bottom left) and CPR (bottom right) databases.
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range (> 200 µm) due to their preference within the model for

diatoms and other large-bodied phytoplankton (Dutkiewicz et al.,

2015). The model was run for 10 years with physics from a generic

year. After about 3 years a stable seasonally varying ecosystem was

established. As in Dutkiewicz et al. (2015) we use output from the

10th year of the simulation. We used averaged surface (0-100 m)

daily means of the large zooplankton carbon mass on a global 1x1°

grid (Figure 2A).
2.3 Dividing the ocean into
zooplankton partitions

Although our partitions are analogous to the global scale

partitioning suggested by Longhurst (2007) or ecoregions
Frontiers in Marine Science 04
(Spalding et al., 2007), they do not adhere to these definitions.

We classify our regions as zooplankton partitions defined as areas

where the zooplankton model output is relatively spatially

homogeneous. Global partitions were defined using the 1° cell

daily estimates of surface zooplankton using MIT Darwin model

carbon mass (MODCM). We created a MODCM matrix where each

row represents the biomass data for each 1° cell and each column

represents one of the 365 daily time steps. We defined the number

of clusters using k-means clustering. K-means is an unsupervised

clustering algorithm that partitions observations into a pre-defined

number of clusters k by minimizing the error sum of squares (ESS)

within each cluster. The optimum number of clusters k is found

following the procedure outlined by McGinty et al. (2011). Briefly,

the optimum k is found through an iterative process where the

explained variance is computed for increasing values of k. The
A

B

C

FIGURE 2

A schematic that outlines the stepwise procedure for comparing modelled and in-situ mesozooplankton carbon biomass. (A) Shows the structure of
the MIT-Darwin model data and the COPEPOD and CPR database that contain the in-situ biomass and count data. (B) The MIT-Darwin data are
clustered into regions with similar characteristics of zooplankton annual cycle. Both COPEPOD and CPR database data are standardized to the same
metric of carbon biomass derived from MIT-Darwin. The partitions are used to extract data and are averaged within each partition to create a time
series of in-situ data that matches the model data estimated within each partition. A similar process is performed for the most abundant (Top 10)
species found within the CPR database and treated in the same way. (C) The model and in-situ time series within each of the partitions are
compared and contrasted by using a simple scatterplot, correlation of normalized data and taylor diagrams to assess model accuracy. For the
individual species, only the correlation and model accuracy is used.
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explained variance grows logistically with increasing k and the

optimum number of clusters was identified when the step-wise

increase in explained variance fell to less than 5% of the maximum

increase observed.

The partitions were used to aggregate the total carbon mass from

both COPEPOD and CPR observations (DATCM), creating a time

series representing the average seasonal pattern of measured

zooplankton biomass within each partition. The carbon mass data

from COPEPOD and CPR were combined and averaged into 36, 10-

day climatological bins (DATCM) within each partition. Time-series

were also prepared for the 5 most abundant taxonomic groups from

each CPR survey (CPRCM, see Supplementary Table 1). Partition-

wide daily mean values of MODCM were calculated and further

averaged across each 10-day period to match the temporal resolution

of the DATCM and CPRCM (Figure 2B).
2.4 Model – data comparison metrics

Quantitative model assessment of the MODCM was performed

using commonly used statistical and graphical methods namely:

scatterplots, Taylor diagrams and skewness. Scatterplots are a

valuable diagnostic tool in model evaluation. They can be used to

visualize the relationships between MODCM and DATCM and a least

squares regression analysis was used to assess the strength of these

relationships. A regression with a slope 1 and intercept 0 indicates a

perfect match between model and data. Taylor diagrams (Taylor,

2001) were used to summarizes relationships between observed data

and model output by simultaneously displaying the Pearson

correlation (r), standard deviation of DATCM - MODCM (SD) and

root mean square error (RMSE). The diagram displays the correlation

strength along the azimuth angle, the SD is displayed radially from

the origin and the RMSE is proportional to the observed reference

along the x-axis where the correlation is equal to 1. Skewness is a

measure of the asymmetry of the error distribution (observations –

model) about its mean. A positive skew indicates that the error

distribution has an asymmetric tail towards large positive values

(model underestimation) and in contrast a negative skew indicates

that the error distribution has an asymmetric tail towards more

negative values (model overestimation). Skewness values of 2 or more

were considered notable. Assuming data were available for all 36-time

intervals, a skewness larger than 0.4 in magnitude was judged as

significantly skewed (Figure 2C).

Data were normalized to a mean of zero and a standard

deviation of 1 to produce a dimensionless z-score for both

MODCM and DATCM in each partition. This allowed for a

qualitative comparison of the spatial and temporal differences

between the model and observational across the year. Cross-

correlations were used to assess whether the relationship could be

improved by assessing lagged process between model and

observational data within each partitions. An improvement in

correlation between model and data with a positive time lag

indicated that the model reported later peaks in biomass

compared with observational data while a negative time lag

indicated the model reported earlier peaks in biomass compared

with observational data (Figure 2C).
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To assess the effect of combining the COPEPOD and CPR

database we correlated each database with the MODCM in each

partition where both datasets were collected and compared these

results with the correlations obtained using DATCM. DATCM was

preferred if there was an overall increase in the correlation of model

and observations using DATCM compared with using each database

separately (Supplementary Figure 1).
3 Results

3.1 Zooplankton partition classification

An optimum number of 10 zooplankton partitions were defined

with a total R2 of 75.5% (Figure 3). Despite the unsupervised nature

of k-means clustering and that the clustering did not incorporate

geographic information, the partitioning had significant spatial

coherence. The partitions in the higher latitudes (poleward of

40○) of both hemispheres were separated along a latitudinal

gradient with partition A, I and J representing polar/sub polar

ecosystems. Temperate ecosystems were represented by partition B

in the northern hemisphere and H in the southern hemisphere.

Within the sub-tropical and tropical ocean we found that the

clusters were defined less by latitude than by the position of the

large oceanic gyres and ocean currents. For example, partition F

encompassed much of the oligotrophic gyres in the open ocean,

particularly in the southern hemisphere while partitions D and E

defined the transition zones, particularly across the North Pacific

and within the Indian Ocean. Partitions C and G were patchier in

distribution and hugged the continental coastline in areas of known

upwelling or downwelling. Partition C appeared almost exclusively

in the northern hemisphere while partition G occurred most often

in the southern hemisphere.
3.2 Model – data comparison

Overall, there was a significant positive relationship between

model and data estimates of mesozooplankton carbon mass (r2 =
FIGURE 3

The global projection of the 10 global zooplankton partitions labelled
(A-J) which were defined using k-means clustering on the large
zooplankton biomass measurements derived from the Darwin model.
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0.4, p < 0.001) (Figure 3). The model tended to match observations

when the carbon mass was low and underestimated observations at

the highest biomass levels with a slope less than 1 (0.62) and a positive

offset of 1.76 mg C m-3 (Table 1). There were differences in the

model-data zooplankton biomass relationship across the

10partitions. Partitions D-F and J showed the lowest agreement

between model and data with a negative relationship observed

between model and data (Figure 4; Table 1). The remaining

partitions all showed a significant positive relationship between

model and data with the slopes of partitions H (0.76) and I (1.2)

closest to 1 (Figure 3; Table 1). Model skill statistics were summarized

by the Taylor diagram (Figure 5) and reflect the findings observed

with the scatterplots. The tropical partitions (D-F) did not appear on

the diagram as the correlation coefficient is close to or less than 0.

Except for partition J, the remaining 6 areas all had a significant

positive correlation between model and data ranging from 0.42 (G) to

0.92 (A). Both partition B and G had standardized deviations greater

than 2 while the remaining partitions are closer to 1.

The normalized biomass plots showed the mean change in the

seasonal trends of MODCM and DATCM within each partition

(Figure 6). In general those partitions with a notable bloom cycle

displayed the strongest direct correlation between model and data

with no temporal lags. There were improvements in the correlation

between model and data for half of the partitions with the model

lagging 30 days (F and I), 50 days (J) and 120 days (D and E) behind

the data (Figure 6). Comparing the correlations between data and

model with the skewness of the error distribution show that the

temperate and sub-polar partitions A, C, I and H were significantly

correlated with skewness close to zero (Figure 7). Only partition B

showed a significant negative skewness in the error distribution

(model overestimation) with the remaining partitions all showing a

significant positive skewness (model underestimation). With the

exception of the Antarctic partition J, partitions with a higher sea-

surface temperature was less strongly correlated and had a larger

model underestimation. The mean SST for the five partitions with a
Frontiers in Marine Science 06
r > 0.5 was 7.8°C while the remaining five partitions were almost 10°

C warmer with a mean SST of 17.5°C.

The correlation and skewness were also calculated for 8 partitions

with CPR data, comparing the most abundant taxonomic groups with

themodel carbonmass (Figure 8). In almost all cases there was a positive

skewness in the error distribution between the CPR biomass for selected

taxa and MODCM. Calanus finmarchicus (Cfin) in partition C was the

only taxonomic group with a significant correlation and skewness less

than 0.4, although a total of 20 taxa among 6 different partitions had

significant correlation with varying degrees of positive skew.While some

partitions (e.g. G and I) had a similar correlation and skewness among

all species within that group, there were other partitions includingC that

showed significant variation in correlation and skew across species (e.g.

Cfin and Metridia lucens – Mluc) (Figure 8).
TABLE 1 The intercept, slope and variance explained (R2) for each linear
regression comparing observed and modelled zooplankton biomass
(DATCM against MODCM) within each partition (n=36) and total (n=360).

Partition Intercept Slope R2

A 3.4 0.45 0.87*

B 4.5 0.26 0.51*

C -1.7 2.02 0.62*

D 4.1 -1.8 0.1

E 16.7 -6.97 0.2

F -9 11 0.16

G 0.75 0.52 0.21

H 1.5 0.77 0.36*

I 0.91 1.2 0.45*

J 1.3 0.36 0.2

Total 1.76 0.61 0.39
Regressions that were significant (p < 0.05) are marked with an *.
FIGURE 5

Taylor diagram showing the correlation, normalised standard
deviation and root mean square error between the modelled
zooplankton biomass from MIT Darwin model and the in situ
zooplankton biomass for each of the 10 global zooplankton
partitions. A perfect match between model and data is represented
by the “observed” point along the correlation of 1 axis.
FIGURE 4

A scatterplot showing the relationship between the in situ data and
model biomass. Each point shows the pairwise comparison between
data and model for each of the 36 10 day periods within the 10
zooplankton partitions.
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3.3 CPR and COPEPOD comparison

A total of 8 partitions were used to compare the effects of

combining measures of carbon mass from COPEPOD and CPR

databases (CPR data were not present in partitions F and J). There

was a significant improvement in the mean correlation of model
Frontiers in Marine Science 07
and observations across the 8 partitions using DATCM (r = 0.55, SE

± 0.12) compared with using COPEPOD (r = 0.33, SE ± 0.09) or

CPR (r = 0.44, SE ± 0.09) data only. The CPR had the strongest

positive correlation with the model in partitions A (0.67) and C

(0.64) while COPEPOD had the strongest correlation with the

model in partition I (0.83). A linear regression of observation-
FIGURE 6

A comparison of the normalized seasonal trend for zooplankton data (red line) and model output (blue line) across the full year. Lagged zooplankton
data (dashed red line) time series are shown where lagged data improve correlation between model and data. Each panel shows the strongest
Pearson correlation (r) between data and model within each of the 10 zooplankton partitions after accounting for temporal lags r (lag). A positive lag
indicates that the model trend is shifted later than the data.
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model correlation coefficients between DATCM and each of the

databases showed a significant positive relationship in both

COPEPOD (R2 = 0.8; y=1.1x+0.21) and CPR (R2 = 0.58; y=1.16x

+0.04). In some partitions the correlation between the CPR and

COPEPOD biomass data were negative, such as in partition E

(-0.66). The correlations between CPR and COPEPOD databases

were strongest in partitions where the observation-model

correlation was strongest for DATCM (R2 = 0.44; y=0.55x+0.5)

(Supplementary Figure 1)
Frontiers in Marine Science 08
4 Discussion

We have developed a framework to compared sparse

observational data with gridded model output by developing

ecological partitions based on the seasonal patterns of

mesozooplankton carbon mass. Here we used output from the

MIT Darwin model (Dutkiewicz et al., 2015), but this framework

could be used for skill assessment of any model that includes a

mesozooplankton specific output variable. We used the model

output to create a global mosaic of partitions defined by the

seasonality of the zooplankton. By aggregating data within each

partition we compared modelled and observed biomass despite the

challenge of irregular and sparse sampling of zooplankton. Model

estimates of mesozooplankton carbon mass correlated with

observational measurements of zooplankton carbon mass but the

model skill varies across each zooplankton partition. The best-

performing partitions were in the temperate and sub-polar latitudes

(partitions A, B, C, H and I) where the correlations between model

and data were greater 0.5 (Figures 3, 4). These regions have strong

bloom cycles, which the model was able to capture with relative

skill. Except for partition A (which showed significant model

overestimation), there was no significant model over- or under-

estimation of carbon mass based on the error skewness. Our

analysis provides an encouraging assessment of the model

performance for zooplankton. The remaining partitions were

situated in the equatorial and high polar latitudes and performed

poorly in comparison. All correlations in these partitions were less

than 0.5 with significant model underestimation based on the

error skewness.

The differences in model performance between the temperate/

sub-polar and tropical/sub-tropical partitions were likely driven by

the magnitude of the seasonal changes in mesozooplankton biomass

and the complexity of the trophic pathways. Seasonal biomass can

vary by a factor of 20 (Mackas et al., 2007) in the temperate/sub-

polar regions but in the tropics the variation may be as low as 2 or 3

(Fernández-Álamo et al., 2006). There is a distinct functional

relationship between zooplankton biomass and phytoplankton

productivity in the higher latitudes. Areas with a high biomass of

large phytoplankton cells (> 20 µm) are more likely to support a

more direct trophic pathway to meso-zooplankton which are

dominated by herbivores-omnivores (Décima 2022). With larger

phytoplankton dominating the spring bloom production there is a

much more direct coupling and efficient transfer of carbon between

phytoplankton and zooplankton (Cushing, 1989; Romero-Romero

et al., 2019). In the tropics and equatorial regions the trophic

pathways are often longer and dominated by carnivory which is

more difficult to predict (Décima 2022) and was not included in this

version of the Darwin model. There are also differences in the inter-

annual environmental drivers of phytoplankton and zooplankton

growth. In the northern latitudes the springs bloom is an annual

event initiated when nutrient and light levels allow for a net-

positive growth in phytoplankton with zooplankton following a

similar process of rapid population growth. In contrast, the seasonal

changes are not as apparent in the tropical oceans with smaller

increases and decreases in standing stock driven by regional

weather patterns and water mass movement (Fernández-Álamo
FIGURE 7

The correlation coefficient (r) and the skewness of the model error
distribution between model and in situ data for each of the 10
zooplankton partitions. Positive skew values indicate an error distribution
towards model underestimation and vice versa. Each partition cluster is
represented by a different color and are scaled according to the mean
sea surface temperature (SST) within each partition.
FIGURE 8

The correlation coefficient (r) and the skewness of the model error
distribution between model and in situ species level data for 8/10 of
the zooplankton partitions. Positive skew values indicate an error
distribution towards model underestimation and vice versa. Each
partition cluster is represented by a different color and are labelled
with an abbreviation for each species or species. Calanus, Calanus
spp.; Oithona, Oithona spp.; Acartia, Acartia spp.; Mluc, Metridia
lucens; Chel, Calanus helgolandicus; Cfin, C. finmarchicus; Euph,
Euphausiacea; Scop, small copepods; Lcop, Large copepods.
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et al., 2006). Throughout the tropical and sub-tropical ocean much

of the surface waters are chronically nutrient depleted with a strong

dominance of smaller picophytoplankton species which are not

readily consumed by mesozooplankton groups but are instead

grazed by smaller protists (Sherr and Sherr, 2002; Schmoker et al.,

2013) developing the “microbial loop” (Azam et al., 1983; Passow

et al., 2007). In this process grazing in the microbial loop is

predominantly driven by microzooplankton (Calbet, 2008;

Fenchel, 2008) which are in turn more heavily grazed by the

smaller sized carnivorous mesozooplankton species. Grazing

measurements at the equator have shown that 83% of

phytoplankton production is removed by microzooplankton

compared with only 10% of mesozooplankton (Landry et al.,

1995). In these regions with more complexity and less seasonality

the MIT Darwin model (Dutkiewicz et al., 2015) did not perform

well. In the model it is the small zooplankton, which are not

compared here due to lack of observational data from these

smaller size classes, that presumably dominate the grazing.

In order to improve model validation and parametrization of

zooplankton, there needs to be significant development in the

collection of rates, traits and stocks in our oceans (Ratnarajah

et al., 2023). Our work focuses on the third component. We

examined the dynamics of the underlying model to identify

partitions with similar temporal patterns of zooplankton biomass.

With an increase in data availability from newer technologies, there

is a need to develop a framework that facilitates data integration

across the different sampling systems. We provide a procedure to

combine traditional net samples with CPR by standardizing to a

similar metric of biomass to that can be compared with the model

output. Other samplers such as imaging, acoustic and molecular

methods are more disparate in their collection of zooplankton data

anpresent greater challenges in designing an integrated approach

(Ratnarajah et al., 2023). Recent progress has been made towards

using imaging data (e.g., from the Underwater Vision Profiler or

UVP) to estimate the global distribution of zooplankton biomass

(Drago et al., 2022). Size -based information from the images of

individual zooplankton is used to predict carbon biomass globally

using habitat models. The UVP data can provide insight into the

vertical distribution of zooplankton biomass which is something

that is overlooked by surface and integrated surface sampling of the

CPR and nets. Comparing the vertical distribution of zooplankton

model estimates is vital as they play an important role in the

biological carbon pump through active vertical carbon transport.

Diel migrants can represent a large portion of the total carbon

export for an area (Kwong et al., 2020; Oliviera et al., 2022) while

the seasonal migration of diapausing copepods in higher latitudes

offer a sustained transport of carbon export and sequestration to

deeper waters (Pinti et al., 2023).

Since Longhurst’s definition of 56 biogeochemical provinces,

there have been numerous studies that partition the ocean based on

biogeochemical and physical properties (Longhurst, 2007) and bulk

properties or community composition of plankton (e.g. Oliver and

Irwin, 2008; Reygondeau et al., 2011; Elizondo et al., 2021). These

approaches use measured biological and physical data to define the

ocean partitions using probabilistic thresholds of statistical

similarity. The result is a separation and summarization of the
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processes that control ocean structure and organization

(Kavanaugh et al., 2014). Our approach is novel in that it

clustered the ocean based on the temporal variation in the meso-

zooplankton biomass from the model output. This technique allows

us to cluster sparse observations and test if the spatial and temporal

variation in the observational data match the model. Despite the

differences in criteria used in our partitioning, many of the features

found are consistent with features found in earlier iterations of

ocean partitioning. For example, we find a clear latitudinal

separation between the high and low latitudes (Reygondeau et al.,

2013), between the polar and westerly partitions in the North

Atlantic (Beaugrand et al., 2019) and the Arabian Sea and the

Indian Ocean (Spalding et al., 2012). Though the focus of this study

has been on developing a method to evaluate model output using

sparse data, the delineation of partitions by means of zooplankton

seasonality may in itself be a useful tool. In the temperate seasonal

regions where the model-data comparisons are good, we believe

that the data-based results (e.g. Figure 6) offer a first large scale

depiction of mesozooplankton seasonality. For instance, the more

poleward partitions show steeper and narrower peaks in

zooplankton biomass than those slightly less poleward (e.g. A and

J versus B and I in Figure 6). For the northern partitions (A, B and

C) the timing and duration of the zooplankton growing season were

matched within 10 days. For the southern partitions (G – J) there

was more variation in the data between months which make the

comparison of the zooplankton model and data more difficult. In

partitions I and J, the model lags the data by 30 days. Temperature is

a primary driver for zooplankton timing in this area (Mackas et al.,

2012); however, the breakdown of seasonal sea-ice may be just as

significant in altering the timing of the zooplankton growing season

(Conroy et al., 2023). As a result the model may not be able to

predict the earlier growth caused by an earlier loss of sea-ice. The

biggest discrepancies are seen within the tropical partitions (D – F)

both in terms of timing and the overall carbon mass. Here carbon

mass are orders of magnitude less in the model compared with in-

situ measurements such that a scatterplot for these partitions is a

flat horizontal line (Figure 4). Further work is needed in these areas

to understand why such large discrepancies exist between data and

model in these areas.

We identified several taxonomic groups that were correlated

significantly with the modelled mesozooplankton biomass,

suggesting that species-specific signals can be extracted from

these broad scale estimates of zooplankton biomass in

biogeochemical models. The partitions where the total carbon

mass correlated poorly between observations and data were also

poor in estimating the biomass of individual species (e.g. partition

E) and vice versa (e.g. partition A) (Figures 3, 4). Partition D

performed poorly when comparing overall carbon mass exhibited

significant correlations between modelled zooplankton biomass and

observed biomass of several species. Even among the better

performing partitions overall there was still a large degree of

variation in the taxonomic groups that correlated strongly with

the model, possibly due to their geographic distributions. For

example both Calanus helgolandicus and C. finmarchicus are

ecologically important copepods in the North Atlantic (Helaouët

et al., 2011). In the partitions that overlap with their known
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biogeographic distributions (A, B and C) they correlated strongly

with the model. Moving southward to partition D we found that the

correlation with C. helgolandicus remained significant but not for C.

finmarchicus as it occupies a colder, more northerly niche than its

congener (Helaouët and Beaugrand, 2007). For Euphausiacea, the

strongest correlations were seen in partitions I andH where they are

a vital component of the southern ocean food web and

biogeochemical cycling, forming dense aggregations of more than

10 000 individuals m-3 (McBride et al., 2021).

Our focus has been quantifying the discrepancy between model

and observed estimates of zooplankton biomass, but there are several

associated caveats that must be considered when using observations

for model evaluation. The data obtained for this analysis were

compiled from over 50 years of data from a wide variety of

different collection types. Mesh size often has a large influence on

zooplankton sampling (Skjoldal et al., 2013; Everett et al., 2017). The

COPEPOD database has made significant steps to standardize

abundance and biomass for different mesh sizes by developing a

333 µm mesh equivalent for the most prevalent mesh sizes of 200 µm

and 505 µm (O’Brien, 2007). The CPR has a mesh size of 275 µm was

not standardized beyond the conversion to carbon mass units.

Comparisons between CPR and net haul data tend to show a

significant under-sampling of the total zooplankton abundance

using the CPR but do correlate quite well to the changes in

seasonal patterns of abundance (e.g. John et al., 2001; Head et al.,

2022). The addition of CPR observations for model comparisons has

the potential to lead to negative skew or model overestimation in

some areas due to under-sampling. However, when looking at the

CPR species data only we found that the vast majority of species were

still positively skewed or underestimated by the model. Combined

with the improvement in observation and model comparisons using

both CPR and COPEPOD data together we find that there are greater

benefits in including all available data despite remaining

discrepancies in data collection and standardization.

Identifying both model agreement and model discrepancies for

zooplankton is pivotal to improving zooplankton dynamics in these

systems (Everett et al., 2017; Shropshire et al., 2020). Such

improvements are necessary for modelling trophic transfers which

will be important for modellers’ attempts to capture fish and to make

prediction for the future oceans under climate change. Our model-

data comparisons of zooplankton carbon mass have shown that

observational measurements agree quite closely with the MIT Darwin

biogeochemical model in the temperate and sub-polar latitudes but

are quite poor in tropical, oligotrophic and Antarctic partitions with a

significant skew towards model under-estimation. Elucidation of the

seasonality could be useful for purposes beyond model-data

comparisons such as fisheries or base-line observations against

which climate driven changes in mesozooplankton dynamics could

be measured. Our study highlights the advantages of partitioning the

ocean to simplify the process of comparing model output with

sparsely collected data. The partitioning was derived from the

spatio-temporal patterns of zooplankton biomass and can be used

to investigate why the model works in some areas and not others.

Potential areas of development could explore whether an increase in

the complexity of modelled trophic interactions (phyto- and zoo-)

will improve estimates of carbon mass in the tropical partitions. The
Frontiers in Marine Science 10
model framework provides an opportunity to estimate the effects of

zooplankton functional type addition or removal through a number

of idealized experiments (Dutkiewicz et al., 2021). The use of

partitioning delineates boundaries where different zooplankton

functional types or strategies can improve the overall performance

of the model in estimating mesozooplankton biomass.
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