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Fractal analysis of dispersal
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Abstract: We develop a tractat method, based on dispersal data, for quantifying the “degree of ciustening’ of spattal pomt
patterns. Clustered spatial patterns are commonly encountered in biology, from local to landscape spanal scalcs. We begin by
outliming Mandelbrot's "Lévy dust’ [ractal model for generating spatial point patterns. In this model, a high tractal dimension
{{} = 2) results m a relatively even disiribution ot points in the plane. Lowering the fractal dimension (D < 2) generaies point
patterns with mcreasing levels of clusiering ai all spatial scates, The Palm intensity method for determining the tractal dimension
of point patterns 18 briefly discussed. Next, we note that the distribution function of dispersal distances ('Lévy flights’) for the
Lévy dust model is an nverse power function. Since diaspore dispersal curves for higher plants also take the form of an inverse
power funciron, the fractal point pattern dimension D for a given species can be estimated from a log-log dispersal plot. We
apply this method to published dispersal curves. Our results suggest that species with limited diaspore dispersability have D >
2.0, indicating that they occur 1n the landscape as a colomzimg front (a ‘phalanx’ colomzation strategy). Species with speciat
adaptations for potential long-distance dispersal, by conirast, generally have D < 1.0, Such species tend to disperse through the

landscape as 1solated colomists, forming new colonies far from the parent plant (a “guerilla’ cofonizaton sirategy).

Introduction

Clustered (under-dispersed) spatial patterns are com-
monly encountered in vegetation. At local scales, a
regutar (over-dispersed) pattern may result from intra-
or mterspecific interactions (e.g., Kenkel 1988, 1993).
However, at broader scales under-dispersed spatial
patterns are almost invariably encountered. This is
generally attributéd 1o environmental heterogeneity
and habitat patchiness, though stochastic factors such
as the nature of diaspore dispersal and historical distur-
bance are undoubtedly also important. Thus, the
specific spanal pattern encountered n the field is
determnined by a complex of factors. Despite this com-
plexity, dispersal informanon can be used to predict
general spatial patterns encountered in nature. Such a
strategy was first used by van der Plank (1960) to
predict the dispersal of pathogens through field crops.
He found that pathogens having limited,dispersability
lend to advance as a wave froni or “horizon'., while
those with higher dispersability often expand from iso-
Jated local infection spots. Harper (1977 54-36) has
generalized van der Plank’s ideas in a discussion of

secd dispersal in higher plants. He speculated that
"isolated plants are unlikely to form horizons of
colonizailon but that dense stands will colonize as an
advancmg {ront". He goes on to say that "there are far
too few studies of dispersal for valid generalizaiions to
be made at this stage but van der Plank’s approach to
the problem of epidemic spread provides a stimulating
model against which new cbservations can be com-
pared and new studies designed" We expand on these
ideas 1n this paper.

Mandelbrot (1983, § 32) outlined a method for the
generation ol clustered spatial point patlerns having
fractal properties (refer to Kenkel & Walker (1993) for
an itroduction to fractal geometry, and examples of
fractal applications m ecology). Fractal point patterns,
known as Lévy dusts, show statistical self-similarity.
For our purposes, self-similarity in this context refers
to consistency in the intensity of clustertng at different
spatial scales. The tensity of clustering increases
with decreasing fractal dimension D {see Mandelbrot
1983: 298, for examples}). The Lévy dusts model
generates patterns that reflect the distribution of
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galaxies, and has been used successfully to model the
spatial distribution of earthquake epicenters (Ogata &
Katsura 1991} and myocardial blood vessels in heart
tissue (King et al. 1990).

In this paper, we examune potential applications of
fractal analysis to the quantification of vegetation pat-
tern. Qur emphasis 1s on spatial point patterns and their
fractal analysis, particulariy as they relate to disper-
sability. Specific objectives are: (1) to outline the Lévy
dust clustered point pattern model, and to produce il-
lustrative examples at various fractal dimensions; (ii)
to outline the Palm 1intensity method for determining
the fractai dimension of empirical spatial point pat-
terns; and (iii) to develop a strategy for determining the
fractal dimension D from dispersal data. We also brief-
ly speculate on the application of fractal concepts to
the analysis of paltern and scale 1n vegetation.

Methods
(a} Simutated Lévy dust of various dimensions

Mandelbrot (1983, § 32) describes the generation of
clustered pount patterns using the Lévy dust model.
These spatial point patterns are sumply the set of
'landing points’ between 'Lévy flights’. Each Lévy
flight 18 determined by a vector, with a random direc-
tion chosen uniformiy from [0,27) and a flight length
r chosen from the conditional probability

l I’S o,
(ro/r)D F> 1,

P(R>|R>r0)={ N

where rg 15 the manimum flight length. A random
sunulation of such a pattern can thus be obtained by
generating a series of r values according to:

r=rg (1 =xy VP (2)

where x 1s a random uniform value from [0,1), and D
15 the fractal dimension. Ogata & Katsura (1991) used
this method to generate approximate Lévy dusts (2-
dimensional unit square torus, ¥ = 1000 points) with
D=[.0andrp=0.00]1. We use a similar algorithm, but
without toroidal boundary conditions.

(b) Estimating the fractal dimension D of clustered
point patterns

A crude empirical method for estimating [ of
clustered point patterns was described by King et al,
(1990). They used successive grids ('pixeis’) of dif-
ferent size to quantify variation in point counts at
various spatial scales, In their method, £ = 1.5 for ran-
dom pont patterns while D < 1.5 for clustered patterns.
According to King et al. (1990), their £ approaches i
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as "uniformity of the property over all length scales" is
reached,

Ogata & Katsura (1991} describe mathematically
more rigourous methods for the estimation of D, They
outline non-parametric and maxunum likelihood es-
timates based on two methods: (a) estimation through
Palm 1ntensity; (b) estumation through spectrum
analysis (periodograms}). Of these, the non-parametric
Palm intensity method is the most straightforward and
15 described here. The Palm mtensity, ﬁo (u), 18
defined as the ratio of the number of vectors, A, inside
an annulus Afu;, ). The vectors A are taken from the
set of all vectors joining one point to another point 1n
the patiern (thus, if there are n points in the pattern,
there are by definition n vectors). Note that the an-
nulus, A, 15 defined as a ring of outer radius u, and
inner radius u;. We implemented the algorithm as fol-
lows:

{consider cach point 1n the pattern 1n turn).
for a point Q, toop over all ponts 1n the pattern,
mciuding Q.
determine the distance between point Q
and the other point.
decide which annulus this distance
falls 1n.
compute the area of the annulus, allowing for
edge effects.
add this contribution to the Palm 1intensity func-
tion.

Ogata & Katsura (1991) demonstrate that the slope of
the log-log plot of Palm intensity vs. annutar radius has
aslope of H=D-2.

It should be noted that this algorithm 15 suitable oniy
for patterns contamnng a large number of points (say,
N> 1000). Ogata & Katsura (1991) used this and other
methods to determune the fractal dimension of
epicenters of shallow earthquakes (N = 1867) in the
Honshu region of Japan. Unfortunately, in biology
data sets of this type and size are difficult and expen-
sive to obtain. In the following section, we denive an
alternative strategy involving estimation of the fractal
dimension from dispersal data.

{c) Estumating the fractal dimension D from
dispersal data

We deveiop a straightforward alternative method for
estimating the fractal dimension D. The method uses
dispersal data, which are widely available in the
biological literature. Although this paper deals ex-
clusively with higher plant diaspores, the method 15
equally applicable to the spores of lower plants, plant
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pollen, fungal spores, and with some modification
could be applied io ammal dispersion.

The most widely used ’dispersal curve' mode! 15 the
simple inverse power law, It has been widely used 1n
the phytopathology literature (e.g., van der Plank
1960, Gregory 1968) and as a stmple modei of seed
dispersal 1n plants (see Harper 1977, Okubo & Levin
19893, The model lakes the gencral form:

y=cus P 3)

8l

where y = probability density, s = distance from
source, and o and [} are constants, The log-log plot
linearizes the inverse power law:

logy=0—Plogs. {4

The log-log form of the inverse power law was used by
van der Plank (1960) to analyze the spread of plant
pathogens. He concluded that pathogen species having
limited dispersability (log-log slope > 3) tend to ad-
vance as a wave froni, while those with higher disper-
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Figure 1. Random simulations of Lévy dust fractal point patterns (N = 2500, rg = 0.001). The quanuty D 1s the fractal
dimension. Note that the same random number 1nitiator was used in each case.
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sability (fog-log slope < 2} expand as 1solated local in-
fection spots {see also Gregory 1968).

Returning to the conditional probability of Lévy dusis
(equation [1]), the frequency distribution of Lévy
flight distances can be derived as:

RA=D/rofrg/rtPHD (5)

Note that this has the form of the inverse power law.
This can be linearized (log-log piot) to give:

log i =tog D/rg— (D + 1) log (r/ry) (6)

which has the form of the log-log plots of van der
Plank (1960). An estimate of the point pattern fractal
dimension D for a given species can therefore be ob-
tained from the slope of the log-kog piot of the disper-
sal curve (D = - (slope + 1}).

(¢) Dispersal data

The fractal dimension D was computed for various
vascular plant species, based on published dispersal
data. We used the data summanized in log-log form by
Harper (1977: 55).

Results
{a) Simutated Lévy dust fractal potnt patterns

Four examples of Lévy dust fractal point patierns (D =
2.0, 1.65, .35 and 1.0) are illustrated in Fig. 1. Note
that we used the same 1nitial random number In each
case, to emphasize differences in the distribution of
point clustering at various fractal dimensions. At D =
2, points tend to fill the plane, since aimost all the dis-
persal distances (Lévy flight lengths) are relatively
small. Pownts are increasingly clustered with decreas-
ing fractal dimension, reflecting an increased
probability of large dispersal distances. At D = 1.0, for
example, the spatial pattern 1s characterized by 180~
lated patches or clusters.

(b) Fractal dimension of plant species

Table | summanzes the results of slope and fractal
dimenston D calculations for eight vascular plant
species. Fractal dimensions [ > 2 are characteristic of
species having no special adaptations for long-distance
dispersal (e.g., Papaver dubium, Dipsacus sylvestris,
Dactylis glomerata). Seeds of these species fall close
te thewr parent, resulting in a 'phalanx’ type of
colonization {c.f. Fig. 1, D=2). Species with wind-dis-
persed seeds {e.g. Senecio Jacobaea, Picea engelman-
nii, Verbascum thapsus) have D < 2, resuiting in a
“euerilla’ type of colomizaton (c.f. Fig.1, D =1).
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Table 1. Estimated slope and fractal dimension D of various
plani species. Based on the tog-log dispersal plots in Harper
(1977:55).

Species Slope Fractal dimension

(™
Dactylis glomeraia -5.24 >2
Papaver dubium -3.91 >2
Dipsacus syivesins -3.83 2
Piced engelmannii -2.55 1.55
Verbdscunt thapsus -2.42 1.42
Eucatypius regnans -2.00 1.00
Senecto juacobaeq : -1.64 0.64
Tussitago farfura -1.02 0.02

Discussion

This study has shown that the "Lévy dust’ fractal point
patterns (Mandelbrot 1983) can be used as a general
model of species dispersal and vegetation spatial pat-
tern. We have shown that the Lévy dust model is based
on an inverse power law relattonship. Published dis-
persal data for higher plant diaspores and fungal
pathogens also fit the inverse power law (e.g. van der
Plank 1960, Harper 1977). Thus one can estumate the
fractal dimension D from dispersal data, which 1 turn
allows one to visualize the resulting spatial configura-
tion. It 1s important to recognize that this model cannot
reproduce a specific pattern, but rather 1ts essenfial un-
derlying features (e.g. degree of clustering, sell-
similarity). This 1s analagous to the problem of
describing coastline complexity (Mandelbrot 1967):
while a fractal modei cannot reproduce the coastline of
Britain {say) exactly, 1t does summarize a number of
essential features of the coastline.

We feel that the fractal 'Lévy dust’ approacn has con-
siderable potential m modelling fungal pathogen
epidemics, colonization and distribution of weeds 1n
crop fields, and vegetation pattermng generally.
Published mformation on epidemic disease spread
{e.g., van der Plank 1960, Gregory 1968) certaimly
supports our view that biological spatial patterns are
fractal, and our anatysis of dispersal data (from Harper
1977y offers further empirical support. But 1s there any
evidence of fractal-like (self-similar) spatial patterns
in vegetation? Unfortunately, very few maps of the
spatial pattern of organisms over a number of spatial
scales have been published. Perhaps the best example
1s the distribution of Clematis fremontii {Erickson
1945), which we have reproduced 1n Fig. 2 (at three
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Figare 2. The spatial pattern of Clematis fremontii var.
reehlii at three spainal scales (adapted from Erickson 1943).
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scales; Silvertown & Lovett-Doust [1993: 108] il-
lustrate the pattern over all five spatial scales mapped
by Erickson). What 1s remarkable about this set of
maps is the clear display of empirical self-similanty.
Of course we recognize that this (or any other) spatial
pattern 1s determined by a number of factors other than
dispersal. For a species (o oceur at a given location, it
must first of all arrive there, However, 1t may not suc-
ceed at a given site for a number of reasons. Abiotic
conditions (e.g., edaphic Tactors) may not be favour-
able for germmation and/or establishment, or the
species may be oulcompeted by other species. Histor-
cal factors (e.g. the occurrence and frequency of fire)
will also play a role in determining species success at
a site.

It 15 apparent that a complex of factors determmne the
actual pattern observed. Given this fact, 1s therc any
hope of modelling the actual spatial pattern of a
species? As already mentioned, the fractal model is of
limited use if one wishes to obtain an exact map.
However, it our objective 1s to model and duplicate the
‘overall look’ of the pattern, the fractal model 1s par-
ticularly useful. As an example, consider the distribu-
uon of earthquake epicenters modelled by Ogata &
Katsura {1991), Just as the déterminants of biological
patterns are complex, locations of carthquake epi-
centers are controlled by a complex of geomorphotogi-
cal and geophysical factors, which precludes
development of an exact model of thewr spatial dis-
tribution. Nonetheless, Ogata and Katsura demon-
strated that the empirical pattern of epicenters 1n Japan
displayed fractal properties (I = 1.26). Thus the Lévy
dust fractal point pattern model 1s applicable even if
the processes generating the spatial patiern are com-
plex and synergistic.

Our siudy suggests that plant species can be ordered
along a *dispersability gradient’, with the position of a
species along the gradient determuned by 1ts fractal
dimenston. Species with low disperability have a
higher fractal dimension (£ = 2). As such. they are ex-
pected Lo move tm’ough the landscape as a slowly ad-
vancing tront, and to be relatively evenly distributed
across the landscape (see Fig. 1, D = 2). By contrast,
spectes of low. fractal dimension (D < 1) show higher
dispersability (e.g. ruderal plant species). Such species
are expected to move through the landscape n jumps,
forming isolated colonies. As a result, they show a
highly clustered pattern at all spatial scales (see Fig. 1,
D=1).
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