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We first present a predator-prey model for two species and then extend the model to three species where the two 
predator species engage in mutualistic predation. Constant effort harvesting and the impact of by-catch issue are 
also incorporated. Necessary sufficient conditions for the existence and stability of positive equilibrium points are 
examined. It is shown that harvesting is sustainable, and the memory concept of the fractional derivative damps 
out oscillations in the population numbers so that the system as a whole settles on an equilibrium quicker than 
it would with integer time derivatives. Finally, some possible physical explanations are given for the obtained 
results. It is shown that the stability requires the memory concept in the model.
1. Introduction

Ecological models are of great importance for environmental de-
cision making because they provide stakeholders with a conceptual 
framework and a “laboratory” for studying the consequences of alter-
native policies and management scenarios [1]. One common method 
that scholars use to improve our understanding of environmental phe-
nomena is the Lotka-Volterra (or predator-prey) model – an important 
and popular prototype model appearing in various fields of applied 
mathematics – due to its descriptive power, tractability and diverse ap-
plications [2, 3, 4, 5, 6, 7, 8, 9]. Therefore, many efforts have been 
made so far to propose more realistic models incorporating mutualism 
[10, 11], parasitism [12, 13], and the impact of harvesting [14, 15, 16, 
17, 18, 19, 20].

Some scholars extend models formulated with fractional deriva-
tives through applying fractional calculus (FC). In 2013, by subjecting 
the predators to harvesting, a modified fractional version of predator-
prey model with a type II functional response was proposed [15]. 
Later, the fractionalised model was developed further by adding an 
economic interest equation to the model [21]. More recently, in ad-
dition to using the Caputo derivative to study the complex behaviour
of the phenomena, scholars applied the newly formulated fractional 
version of the Adams-Bashforth method in their research [22, 23, 
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24, 25, 26, 27]. As another, for example, Kolade proposed a three-
component time-fractional system representing the interaction among 
prey, intermediate-predators, and predators and examined the model 
behaviour under Caputo or the Atangana– Baleanu fractional deriva-
tives [28].

In this study, we consider a new type of fractional model for three 
species (two predators and one prey) with type II mutualistic predation. 
An example of the type of interaction the model idealises is the mutu-
alistic predation of spotted dolphins and yellowfin tuna upon schools 
of lanternfish [29]. Since the understanding of harvesting is an im-
portant issue for fishering, we assumed that all species have a market 
value, and also considered the impact of by-catch for dolphins when 
fishing for tuna. Making a comparison between the integer derivative 
model and fractional model under different scenarios, we examine the 
concept of “memory” on our model. We show that stability is more 
robust when the species exhibit “memory”. We examine the impact 
of harvesting on the system with and without the memory concept as 
well.

2. Preliminaries on fractional calculus and main models

Fractional calculus is a powerful tool which has been employed in 
different fields of science to model complex systems with non-local be-
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haviour and long-term memory [30, 31, 32, 33, 34, 35]. This approach 
can lead to models capturing more of the phenomena under scrutiny 
while still keeping the model parameters to a minimum.

The adjective “fractional” in FC is a historical remnant and this 
calculus is a generalisation from integer order derivatives to arbitrary 
real-valued order, not merely rational order. Generally speaking, it can 
be formulated as follows.

𝑑𝛼𝑓

𝑑𝑡𝛼
=
⎧⎪⎨⎪⎩
𝐷𝛼𝑓 (𝑡) 𝛼 > 0
𝑓 (𝑡) 𝛼 = 1
𝐼𝛼𝑓 (𝑡) 𝛼 < 0

(1)

where 𝐷𝛼 and 𝐼𝛼 are the fractional derivative and fractional integral 
respectively [36]. Various definitions of fractional calculus have been 
proposed. All definitions coincide when the order is integer, however, 
this need not be the case for non-integer order. Therefore, different 
physical interpretations, known as the memory concept, are proposed 
in the fractional case [30].

We will use the Caputo definition (for other formula, see [30, 36, 
37]).

𝐶
𝑎
𝐷𝛼

𝑡
𝑓 (𝑡) =

𝑡

∫
𝑎

𝑤(𝑡− 𝜏)𝐷𝑓 (𝜏)𝑑𝜏 s.t 𝑤(𝑡) = 𝑡−𝛼

Γ(1 − 𝛼)
(2)

where 0 < 𝛼 < 1, and 𝑤(𝑡) is a weight function whose task is the storage 
of the system memory over time [30].

Larger values of 𝛼 increase the weight on the integrand 𝐷𝑓 close 
to 𝑡, emphasizing the memory of nearby values of 𝑓 . When alpha is 
close to zero, models formulated with the Caputo derivative (0 < 𝛼 < 1), 
will retain close to complete memory of the past starting at time 𝑎. It 
is expected that when the system maintains a near total memory of its 
past then the system resists changing over time. Based on this interpre-
tation, therefore, we are expecting that oscillations in the population 
numbers of a species damp out in a system with the fractional time 
derivative of the order less than unity. We have examined this issue in 
the forthcoming sections and shown that this is the case with fractional 
prey-predator models.

2.1. Single predator model

In this section, we considered a fractional model of predator and 
prey. Using constant harvest quota 𝐻1(𝑋) = ℎ1𝑋 and 𝐻2(𝑌 ) = ℎ2𝑌 , we 
assume that either both species have market value or that one species 
is caught as by-catch. By doing so, we tried to answer such questions 
as how does the harvesting of the species affect the natural equilibrium of 
the ecology? How heavily can a species be harvested and still be sustainable 
[20, 38]?

𝐶
0 𝐷

𝛼
𝑡
𝑋(𝑇 ) = 𝑟𝑋

(
1 − 𝑋

𝐾

)
− 𝑎𝑋𝑌 −𝐻1(𝑋),

𝐶
0 𝐷

𝛼
𝑡
𝑌 (𝑇 ) = 𝑎𝑋𝑌

1 + 𝜎𝑋
− 𝑘𝑌 −𝐻2(𝑌 ),

(3)

where 𝑋 and 𝑌 are the population densities of prey and predator re-
spectively, 𝑇 is time, 𝑟 is the prey growth rate, 𝐾 is the environmental 
carrying capacity for the prey, 𝑎 is the feeding rate of predators, 𝜎 is the 
predator growth saturation factor and 𝑘 is the predator death rate. All 
parameters are positive reals.

After substituting the rescalings 𝑋 =𝐾𝑥, 𝑌 = 𝑘𝑦∕𝑎 and 𝑇 = 𝑡∕𝑘 in to 
eq. (3), we arrived at the following dimensionless system

𝑑𝛼𝑥

𝑑𝑡𝛼
= 𝜌𝑥 (1 − 𝑥) − 𝑥𝑦− 𝜀1𝑥,

𝑑𝛼𝑦

𝑑𝑡𝛼
= 𝜓𝑥𝑦

1 + 𝜙𝑥
− 𝑦− 𝜀2𝑦,

(4)

where 𝜌 = 𝑟∕𝑘, 𝜓 = 𝑎𝐾∕𝑘, 𝜙 =𝐾𝜎, 𝜀1 = ℎ1∕𝑘 and 𝜀2 = ℎ2∕𝑘.
2

2.2. Two predators model

In this section, the system (3) is extended to model interactions 
amongst three species: one prey and two predators. The predators are 
not treated as isolated hunters. Rather, we consider the predator species 
to be cooperative. The model of the three species with type II mutualism 
[10, 39] functional response for the predators is

𝐶
0 𝐷

𝛼
𝑡
𝑋(𝑇 ) = 𝑟𝑋

(
1 − 𝑋

𝐾

)
−𝑋 (𝑎𝑌 + 𝑏𝑍 + 𝜉𝑌 𝑍) −𝐻1(𝑋),

𝐶
0 𝐷

𝛼
𝑡
𝑌 (𝑇 ) = 𝑋𝑌 (𝑎+ 𝜉𝑍)

1 + 𝜎1𝑋
− 𝑘1𝑌 −𝐻2(𝑌 ), (5)

𝐶
0 𝐷

𝛼
𝑡
𝑍(𝑇 ) = 𝑋𝑍 (𝑏+ 𝜉𝑌 )

1 + 𝜎2𝑋
− 𝑘2𝑍 −𝐻3(𝑍).

where 𝑋 is the prey population density (lanternfish), 𝑌 and 𝑍 are 
population densities of distinct predators (tuna fish and dolphin respec-
tively), 𝑇 is time, 𝑟 is the prey growth rate, 𝐾 is the environmental 
carrying capacity for the prey, 𝑎, 𝑏, and 𝜉 are the feeding rate of 
predators, 𝜎1 and 𝜎2 are the predator growth saturation factor and 
𝑘1 and 𝑘2 are the predator death rate. As before, all parameters are 
positive reals and the terms 𝐻𝑗 for 𝑗 = 1, 2, 3 are the harvesting func-
tions.

The number of parameters in system (5) can be reduced by consid-
ering the following transformations

𝑋 =𝐾𝑥, 𝑍 =
(
𝑎

𝜉

)
𝑧, 𝑌 =

𝑘1
𝑎
𝑦, 𝑇 = 𝑡

𝑘1

thus we arrive the following dimensionless system:

𝑑𝛼𝑥

𝑑𝑡𝛼
= 𝜌𝑥 (1 − 𝑥) − 𝑥 (𝑦+ 𝜂𝑧+ 𝑦𝑧) − 𝜀1𝑥,

𝑑𝛼𝑦

𝑑𝑡𝛼
= 𝜓𝑥𝑦 (1 + 𝑧)

1 +𝜙𝑥
− 𝜀2𝑦, (6)

𝑑𝛼𝑧

𝑑𝑡𝛼
= 𝛽𝑥𝑧 (𝜂 + 𝑦)

1 +𝜙1𝑥
− 𝜀3𝑧.

where 𝜌 = 𝑟∕𝑘1, 𝜓 = 𝑎𝐾∕𝑘1, 𝛽 = 𝑏𝐾∕𝑘1, 𝜂 = 𝑎𝑏∕𝜉𝑘1, 𝜙 = 𝜎1𝐾 , 𝜙1 = 𝜎2𝐾 , 
𝜀1 = ℎ1∕𝑘1, 𝜀2 = 1 + ℎ2∕𝑘1 and 𝜀3 = (𝑘2 + ℎ3)∕𝑘1.

3. Model analysis

3.1. Existence and uniqueness of the non-negative solution

Definition 3.1. For 𝛼 > 0 and 𝛽 ≥ 0, the Mittag-Leffler function is de-
fined by the following series:

𝐸𝛼,𝛽 =
∞∑
𝑘=0

𝑥𝑘

Γ(𝑘𝛼 + 𝛽)

where Γ is the gamma function.

Theorem 3.1. Assume that Ω = {(𝑥, 𝑦) ∈ℝ2
+ ∶ max{|𝑥|, |𝑦|} ≤𝑀} and 𝑆 =

Ω × [𝑡0, 𝑇 ] where 𝑇 < +∞. Then for any initial conditions 
(
𝑥(𝑡0), 𝑦(𝑡0)

)
∈Ω, 

all the solutions (𝑥(𝑡), 𝑦(𝑡)) ∈ 𝑆 of model (4) are non-negative and unique 
for all 𝑡 ≥ 0.

Proof. (Proof by contradiction): let 𝑘(𝑡) = min{𝑥(𝑡), 𝑦(𝑡)}, then 𝑘(𝑡) > 0. 
Also assume

∃ 𝑡 > 0 𝑠.𝑡 𝑘(𝑡) = 0, and 𝑘(𝑡) > 0 ∀𝑡 ∈ [0, 𝑡).

If 𝑘(𝑡) = 𝑥(𝑡), then after taking Laplacian transform (Table C1& C2 of 
[30]) from the first equation of system (4), we have

𝑥(𝑡) = 𝑥(0)𝐸𝛼

[(
𝜌(1 − 𝑥) − (𝑦+ 𝜀1)

)]
> 0

This leads to a contradiction. In the similar way, when 𝑘(𝑡) = 𝑦(𝑡), we 
can obtain the contradiction. Therefore, ∀𝑡 ≥ 0, 𝑘(𝑡) > 0 and as a result, 
(𝑥(𝑡), 𝑦(𝑡)) will be positive for all 𝑡 ≥ 0.
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We now show that the system (4) satisfies the locally Lipschitz 
condition [40] needed to establish the existence and uniqueness of so-
lutions to system (4).

Consider a mapping 𝔽 (𝑋) = (𝔽1(𝑋), 𝔽2(𝑋)) with ||.|| norm such that

𝔽1(𝑋) = 𝜌𝑥 (1 − 𝑥) − 𝑥𝑦− 𝜀1𝑥,

𝔽2(𝑋) = 𝜓𝑥𝑦

1 + 𝜙𝑥
− 𝑦− 𝜀2𝑦,

We show that

∀𝑋, 𝑋̄ ∈Ω, ∃𝐿 ≥ 0 s.t ||𝔽 (𝑋) − 𝔽 (𝑋̄)|| ≤𝐿||𝑋 − 𝑋̄||
where 𝑋 = (𝑥, 𝑦) and 𝑋̄ = (𝑥̄, 𝑦̄).

||𝔽 (𝑋) − 𝔽 (𝑋̄)|| = |𝔽1(𝑋) − 𝔽1(𝑋̄)|+ |𝔽2(𝑋) − 𝔽2(𝑋̄)|
= |𝜌(𝑥− 𝑥̄) − 𝜌(𝑥2 − 𝑥̄2) − 𝜀1(𝑥− 𝑥̄) − (𝑥𝑦− 𝑥̄𝑦̄)|
+
||||𝜓𝑥𝑦(1 +𝜙𝑥̄) −𝜓𝑥̄𝑦̄(1 +𝜙𝑥)

(1 +𝜙𝑥)(1 +𝜙𝑥̄)
− (1 + 𝜀2)(𝑦− 𝑦̄)

||||
≤ (𝜌(1 +𝑀) + 𝜀1)|𝑥− 𝑥̄|+𝑀|𝑥− 𝑥̄|
+ |𝜓(𝑥𝑦(1 +𝜙𝑥̄) − 𝑥̄𝑦̄(1 +𝜙𝑥)) − (1 + 𝜀2)(𝑦− 𝑦̄)|
≤ (

𝜌+ 𝜀1 + (𝜌+ 1)𝑀
) |𝑥− 𝑥̄|

+𝜓|𝑥𝑦(1 +𝜙𝑥̄) − 𝑥̄𝑦̄(1 +𝜙𝑥)|+ (1 + 𝜀2)|𝑦− 𝑦̄|
≤ (

𝜌+ 𝜀1 + (𝜌+ 1)𝑀
) |𝑥− 𝑥̄|

+𝜓|𝑥𝑦− 𝑥̄𝑦̄|+𝜓𝜙𝑀|𝑥𝑦− 𝑥̄𝑦̄|+ (1 + 𝜀2)|𝑦− 𝑦̄|
≤ (

𝜌+ 𝜀1 + (𝜌+ 1)𝑀
) |𝑥− 𝑥̄|

+𝜓𝑀|𝑦− 𝑦̄|+𝜓𝜙𝑀2|𝑦− 𝑦̄|+ (1 + 𝜀2)|𝑦− 𝑦̄|
≤𝐿1|𝑥− 𝑥̄|+𝐿2|𝑦− 𝑦̄| =𝐿||𝑋 − 𝑋̄|| (7)

where 𝐿1 = 𝜌 + 𝜀1 + (𝜌 + 1)𝑀, 𝐿2 = 1 + 𝜀2 + 𝜓(1 + 𝜙𝑀)𝑀 and 𝐿 =
max{𝐿1, 𝐿2}. That is, with initial condition 𝑋(𝑡0) = (𝑥(𝑡0), 𝑦(𝑡0)), an 
unique solution 𝑋(𝑡) ∈ 𝑆 exists for system (4). □

Theorem 3.2. Assume that Ω = {(𝑥, 𝑦, 𝑧) ∈ ℝ3
+ ∶ max{|𝑥|, |𝑦|, |𝑧|} ≤ 𝑀}

and 𝑆 = Ω × [𝑡0, 𝑇 ] where 𝑇 < +∞. Then for any initial conditions (
𝑥(𝑡0), 𝑦(𝑡0), 𝑧(𝑡0)

)
∈ Ω, all the solutions (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) ∈ 𝑆 of model (6) 

are non-negative and unique for all 𝑡 ≥ 0.

Proof. (Proof by contradiction): let 𝑘(𝑡) =min{𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)}, then 𝑘(𝑡) >
0. Also assume

∃ 𝑡 > 0 𝑠.𝑡 𝑘(𝑡) = 0, and 𝑘(𝑡) > 0 ∀𝑡 ∈ [0, 𝑡).

If 𝑘(𝑡) = 𝑥(𝑡), then from the first equation of system (6), we have

𝑥(𝑡) = 𝑥(0)𝐸𝛼

[(
𝜌(1 − 𝑥) − (𝑦+ 𝜂𝑧+ 𝑦𝑧+ 𝜀1)

)]
> 0

This leads to a contradiction. In the similar way, for 𝑘(𝑡) = 𝑦(𝑡) and 𝑘(𝑡) =
𝑧(𝑡), we can obtain the contradiction. Therefore, ∀𝑡 ≥ 0, 𝑘(𝑡) > 0 and as 
a result, (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) will be positive for all 𝑡 ≥ 0.

As for the existence and uniqueness, after following the same pro-
cedure as Theorem 3.1 and considering a mapping function (Eq. (9)) 
as 𝔽 (𝑋) = (𝔽1(𝑋), 𝔽2(𝑋), 𝔽3(𝑋)), we have found that under the follow-
ing 𝐿𝑖 (𝑖 = 1, 2, 3), equation (10) holds for all 𝑋 = (𝑥, 𝑦, 𝑧) and 𝑋̄ =
(𝑥̄, 𝑦̄, ̄𝑧).

𝐿1 = 𝜌+ 𝜀1 + (𝜌+ 𝜂)𝑀 +𝑀2,

𝐿2 = 1 + 𝜀2 +𝜓
[
1 + (1 + 𝜙)𝑀 +𝜙𝑀2]𝑀, (8)

𝐿3 = 𝜀3 + 𝛽
[
1 + 𝜂 + 𝜂𝜙1𝑀 +𝜙1𝑀

2]𝑀.
3

Fig. 1. Stability region of the fractional-order system.

𝔽1(𝑋) = 𝜌𝑥 (1 − 𝑥) − 𝑥 (𝑦+ 𝜂𝑧+ 𝑦𝑧) − 𝜀1𝑥,

𝔽2(𝑋) = 𝜓𝑥𝑦 (1 + 𝑧)
1 +𝜙𝑥

− 𝜀2𝑦, (9)

𝔽3(𝑋) = 𝛽𝑥𝑧 (𝜂 + 𝑦)
1 + 𝜙1𝑥

− 𝜀3𝑧.

||𝔽 (𝑋) − 𝔽 (𝑋̄)|| ≤𝐿||𝑋 − 𝑋̄|| s.t 𝐿 =max{𝐿1,𝐿2,𝐿3} (10)

Hence, with initial condition 𝑋(𝑡0) = (𝑥(𝑡0), 𝑦(𝑡0), 𝑧(𝑡0)), an unique solu-
tion 𝑋(𝑡) ∈ 𝑆 exists for system (6). □

3.2. Stability analysis

In this section, we have examined the stability of equilibrium solu-
tions of the proposed models. All the calculated stability conditions are 
summarised into Table 1 and Table 2.

To obtain the stability of dynamic models with integer order, one 
very common way is to take advantage of the Routh-Hurwitz (RH) con-
ditions.

i) If det(𝐉(𝐸⋆)) > 0, then 𝐸⋆ will be a saddle point (regardless of the sign 
of Tr(𝐉)),

ii) If det(𝐉(𝐸⋆)) < 0, then 𝐸⋆ will be asymptotically stable when Tr(𝐉(𝐸⋆))
< 0,

iii) If det(𝐉(𝐸⋆)) < 0, then 𝐸⋆ is unstable when Tr(𝐉(𝐸⋆)) > 0.

where 𝐉 and 𝐸⋆ are the Jacobian matrix and equilibrium point of the 
dynamic system respectively.

In addition to RH conditions, in fractional calculus, one needs to 
examine another condition (Lemma 3.1) [41].

Lemma 3.1 ([37, page 158]). Consider function 𝐷𝛼𝐹 (𝑥) = 𝑔(𝑥) with 
0 < 𝛼 ≤ 1. An equilibrium point (𝐸⋆) is asymptotically stable if all eigen-

values (𝜆𝑖, 𝑖 = 1, 2, …, 𝑛) of the associated Jacobian matrix in 𝐸⋆ satisfy the 
following condition (Fig. 1)

| arg(𝜆𝑖)| ≥ 𝛼𝜋

2
, 𝑖 = 1,2, ..., 𝑛. (11)

What stands out from the Fig. 1 is that the stability domain of the 
fractional order system is larger than the corresponding domain for in-
teger systems when 𝛼 ∈ (0, 1). Therefore it is expected that a non-integer 
derivative will increase the stability of the system.

Definition 3.2. Consider the following polynomial

𝑓 (𝑥) = 𝑥𝑛 + 𝑎1𝑥
𝑛−1 + 𝑎2𝑥

𝑛−2 +⋯+ 𝑎𝑛 (12)

the discriminant of the polynomial 𝑓 (𝑥) is defined by 𝐷(𝑓 ) =
(−1)𝑛(𝑛−1)∕2𝑅(𝑓, 𝑓 ′) where 𝑓 ′ is the derivative of 𝑓 and where 𝑔(𝑥) =
𝑥𝑛 + 𝑏1𝑥

𝑙−1 + 𝑏2𝑥
𝑙−2 +⋯ + 𝑏𝑙 and 𝑅(𝑓, 𝑔) is an (𝑛 + 𝑙) ⊗ (𝑛 + 𝑙) determi-

nant.

For 𝑛 = 3, 𝐷(𝑓 ) > 0 implies that all the roots are real and 𝐷(𝑓 ) < 0
implies that there is only one real root and one complex and its complex 
conjugate. Also
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𝐷(𝑓 ) = 18𝑎1𝑎2𝑎3 + (𝑎1𝑎2)2 − 4𝑎3(𝑎1)3 − 4(𝑎2)3 − 27(𝑎3)2.

Lemma 3.2 ([41]). Consider characteristic equation (12), then the condi-

tions that satisfies (11) are as follows.

i) For 𝑛 = 1, the condition is 𝑎1 > 0.

ii) For 𝑛 = 2, the conditions are either RH conditions or

𝑎1 < 0, 4𝑎2 > (𝑎1)2, | tan−1(√4𝑎2 − (𝑎1)2)∕𝑎1| > 𝛼𝜋∕2.

iii) For 𝑛 = 3, if 𝐷(𝑓 ) < 0, 𝑎1 < 0, 𝑎2 < 0, 𝑎3 > 0, then (11) is satisfied for all 
𝛼 > (2∕3).
iv) If 𝐷(𝑓 ) > 0, 𝑎1 < 0, 𝑎2 < 0, 𝑎3 > 0, then (11) is satisfied for all 0 < 𝛼 < 1.

v) For general 𝑛, 𝑎𝑛 > 0, is a necessary condition for (11).

3.2.1. Single predator model

The system (4) has three stationary points: 𝐸1 = (0, 0) extinction 
of both species; 𝐸2 = (1 − 𝜀1∕𝜌, 0) predator only extinction; and 𝐸3 =
(𝜔, 𝜌(1 −𝜔) − 𝜀1) predator/prey co-existence, where

𝜔 =
1 + 𝜀2

𝜓 −𝜙(1 + 𝜀2)
.

According to the stationary points, non-zero harvesting clearly shifts 
the prey-only equilibrium, 𝐸2, to lower densities of prey. For the co-
existence point, 𝐸3, the prey population density is unaffected by har-
vesting of the prey itself but is shifted to higher densities as the rate of 
predator harvesting is increased. The harvesting of prey is effectively 
competition for the predators reducing their equilibrium population in 
concert with any direct harvesting. Also

𝐉
(
𝑥⋆, 𝑦⋆

)
=
⎛⎜⎜⎝
𝜌 (1 − 2𝑥⋆) − 𝑦⋆ − 𝜀1 −𝑥⋆

𝜓𝑦⋆

(1 + 𝜙𝑥⋆)2
(𝜓 −𝜙)𝑥⋆ − 1

1 +𝜙𝑥⋆
− 𝜀2

⎞⎟⎟⎠ . (13)

where 𝐉 
(
𝑥⋆, 𝑦⋆

)
is the Jacobian matrix of the system (4) in the station-

ary points (𝑥⋆, 𝑦⋆).
From (13), it can easily be deduced that 𝜆1 = 𝜌 − 𝜀1 and 𝜆2 = −(1 +

𝜀2) in extinction point (𝐸1). According to Lemma 3.1 therefore, 𝐸1 is 
asymptotically stable for 0 < 𝛼 ≤ 1 if and only if 𝜌 < 𝜀1. That is, if the 
rate of harvesting of the prey outstrips its growth rate, the system is 
driven to extinction.

Also, it can be concluded that the linearised system has two eigen-
values of

𝜆1 = −𝜌
(
1 +

𝜀1
𝜌

)
− 𝜀1 and 𝜆2 =

𝜓(𝜌− 𝜀1)
𝜌+𝜙(𝜌− 𝜀1)

− (1 + 𝜀2)

at 𝐸2, and thus according to Lemma 3.1, 𝐸2 is asymptotically stable for 
all 0 < 𝛼 ≤ 1 only when

𝜓 < (1 + 𝜀2)
[

𝜌

(𝜌− 𝜀1)
+𝜙

]
,

which corresponds to the coexistence point being biologically irrele-
vant. For fixed point 𝐸3, we have

𝐉(𝐸3) =
⎛⎜⎜⎝

−(𝜌𝜔+ 𝜀1) −𝜔
𝜓(𝜌(1 −𝜔) − 𝜀1)

(1 + 𝜙𝜔)2
0

⎞⎟⎟⎠ . (14)

Thus, the trace and determinant of the Jacobian evaluated at Eq. (14) 
are as follows:

Tr(𝐉(𝐸3)) = −(𝜌𝜔+ 𝜀1), det(𝐉(𝐸3)) =
𝜓𝜔

(
𝜌(1 −𝜔) − 𝜀1

)
(1 +𝜙𝜔)2

.

According to RH, the sufficient condition for asymptotically stability of 
the system (4) is when 𝜔 < 1 − 𝜀1∕𝜌.

To satisfy the Lemma 3.1 as the necessary condition, we must have 
(Fig. 2)(
(𝜌+ 𝜀1𝜙)(1 + 𝜀2) − 𝜀1𝜓

)2
<
4
𝜓
𝜌(1 + 𝜀2)(𝜓 −𝜙(1 + 𝜀2))2

×
[
(1 − 𝜀1)

(
𝜓 −𝜙(1 + 𝜀2)

)
− (1 + 𝜀2)

]
. (15)
4

3.3. Two-predator model

There are five stationary points for model (6):

• 𝐸1 = (0, 0, 0), 𝐸2 = (1 −
𝜀1
𝜌
, 0, 0);

• 𝐸3 = (𝑥⋆, 𝜌 
(
1 − 𝑥⋆

)
− 𝜀1, 0) s.t 𝑥⋆ =

𝜀2
𝜓 − 𝜀2𝜙

;

• 𝐸4 = (𝑥⋆, 0, 1
𝜂

(
𝜌(1 − 𝑥⋆

)
− 𝜀1)) s.t 𝑥⋆ =

𝜀3
𝜂𝛽 − 𝜙1𝜀3

; and

• 𝐸5 = (𝑥⋆, 
𝜀3(1 +𝜙1𝑥

⋆)
𝛽𝑥⋆

− 𝜂, 
𝜀2(1 +𝜙𝑥⋆)

𝜓𝑥⋆
− 1) s.t 𝑥⋆ = 1 −

1
𝜌

[
𝜀2𝜀3(1 +𝜙𝜔)(1 +𝜙1𝜔)

𝛽𝜓(𝜔)2
+ 𝜀1 − 𝜂

]
.

where 𝐸1 is total population extinction, 𝐸2 is prey only, 𝐸3 and 𝐸4 are 
equilibria of partial co-existence (the prey with one of the predators), 
and 𝐸5 is the co-existence of all three species with 𝜔 ∈ℝ+.

Linearising the system (6) about the stationary points (𝑥⋆, 𝑦⋆, 𝑧⋆), 
we can determine each point’s linear stability by considering the eigen-
values of the resulting Jacobian matrix.

𝐉
(
𝑥⋆, 𝑦⋆, 𝑧⋆

)

=

⎛⎜⎜⎜⎜⎜⎜⎝

𝜌
(
1 − 2𝑥⋆

)
−
(
𝑦⋆(1 + 𝑧⋆) + 𝜂𝑧⋆ + 𝜀1

)
−𝑥⋆

(
1 + 𝑧⋆

)
−𝑥⋆

(
𝜂 + 𝑦⋆

)
𝜓𝑦∗

(
1 + 𝑧⋆

)
(1 + 𝜙𝑥⋆)2

𝜓𝑥⋆
(
1 + 𝑧⋆

)
1 + 𝜙𝑥⋆

− 𝜀2
𝜓𝑥⋆𝑦⋆

1 +𝜙𝑥⋆

𝛽𝑧⋆
(
𝜂 + 𝑦⋆

)
(1 +𝜙1𝑥

⋆)2
𝛽𝑥⋆𝑧⋆

1 +𝜙1𝑥
⋆

𝛽𝑥⋆(𝜂 + 𝑦⋆)
1 + 𝜙1𝑥

⋆
− 𝜀3

⎞⎟⎟⎟⎟⎟⎟⎠
.

(16)

From (16) and Lemma 3.1, it can easily be deduced that 𝐸1 is asymp-
totically stable for 0 < 𝛼 ≤ 1 if only if 𝜌 < 𝜀1. At 𝐸2 also, we have three 
following eigenvalues

𝜆1 = −𝜌+ 𝜀1, 𝜆2 =
𝜓𝑥⋆

1 + 𝜙𝑥⋆
− 𝜀2, and 𝜆3 =

𝛽𝜂𝑥⋆

1 + 𝜙1𝑥
⋆
− 𝜀3

thus according to Lemma 3.1, 𝐸2 is asymptotically stable for all 0 < 𝛼 ≤
1 only when

𝜀1 < 𝜌, 𝜀2 >
𝜓(𝜌− 𝜀1)

𝜌+ 𝜙(𝜌− 𝜀1)
, and 𝜀3 >

𝛽𝜂(𝜌− 𝜀1)
𝜌+𝜙1(𝜌− 𝜀1)

As for 𝐸3, we have the following characteristic equation.

det(𝐉(𝐸3) − 𝜆𝐼) =
[
𝛽𝑥⋆(𝜂 + 𝑦⋆)
1 + 𝜙1𝑥

⋆
− (𝜀3 + 𝜆)

] ||||||||
𝜌𝑥⋆ − 𝜆 −𝑥⋆

𝜓𝑦⋆

(1 +𝜙𝑥⋆)2
−𝜆

||||||||
.

Therefore, according to the Lemma 3.1 and RH, the necessary and suffi-
cient conditions for asymptotically stability of the system (6) at 𝐸3 for 
all 𝛼 ∈ (0, 𝛼1) is

𝜀1 < 𝜌(1 −𝜔), 𝜀2 <
𝜓

𝜙
, 𝜀3 >

𝛽𝜔(𝜂 + 𝛾)
1 +𝜙1𝜔

, and 𝜌 <
2

(1 +𝜙𝜔)

√
𝛾

𝜔
𝜓

where 𝜔 =
𝜀2

𝜓 − 𝜀2𝜙
, 𝛾 = 𝜌(1 − 𝜔) − 𝜀1 and 𝛼1 = min{1, 2

𝜋
| arg(− 𝜌𝜔

2 ±

𝑖

√
4𝜓𝜔𝛾∕(1+𝜙𝜔)2−(𝜌𝜔)2

2 |}.
Regarding 𝐸4, according to (16), we will also have the following 

characteristic equation.

det(𝐉(𝐸4) − 𝜆𝐼) =
[
𝜓𝑥⋆(1 + 𝑧⋆)
1 +𝜙𝑥⋆

− (𝜀2 + 𝜆)
] ||||||||

𝜌𝑥⋆ − 𝜆 −𝜂𝑥⋆

𝛽𝜂𝑧⋆

(1 + 𝜙1𝑥
⋆)2

−𝜆

||||||||
.

Using the RH condition (ii) and the Lemma 3.1, 𝐸4 is asymptotically 
stable for all 𝛼 ∈ (0, 𝛼1) only if

𝜀1 < 𝜌(1 −𝜔), 𝜀2 >
𝜓𝜔(𝛾 + 1)

, 𝜀3 <
𝜂

𝛽, and 𝜌 <
2

√
𝛾
𝜂𝛽
𝜂(1 +𝜙𝜔) 𝜙1 (1 + 𝜙1𝜔) 𝜔
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Fig. 2. The damping of population oscillations produced by system (4) with initial densities (0.2,0.25) and 𝜓 = 19, 𝜌 = 1, 𝜓 = 15, 𝜙 = 2, 𝜀1 = 0.4 and 𝜀2 = 1. (a and b) 
Numerical values of the lanternfish and tuna versus time respectively. (c): Combined predator-prey population densities with respect to time and (d): Phase portrait 
of the system.
where 𝜔 =
𝜀3

𝜂𝛽 − 𝜙1𝜀3
, 𝛾 = 𝜌(1 − 𝜔) − 𝜀1, and 𝛼1 = min

{
1, 2

𝜋

|||||arg(− 𝜌𝜔

2 ±

𝑖

√
4𝜂𝛽𝜔𝛾∕(1+𝜙1𝜔)2−(𝜌𝜔)2

2 )
|||||
}

.

Also, the following characteristic equation is given for 𝐸5.

det
(
𝐉(𝐸5) − 𝜆𝐼

)
= 𝜆3 −

[
𝑦⋆(1 + 𝑧⋆) + 𝜂𝑧⋆ + 𝜌

]
𝜆2 +

[
𝜀23𝜓𝑧⋆ + 𝜀22𝛽𝑦

⋆

𝛽𝜓𝑥⋆

− 𝜓𝛽(𝑥⋆)2𝑦⋆𝑧⋆

(1 +𝜙1𝑥
⋆)(1 +𝜙𝑥⋆)

]
𝜆

+
[
𝜀2𝜀3𝑦

⋆𝑧⋆ +
𝜌𝜓𝛽(𝑥⋆)2𝑦⋆𝑧⋆ + 𝜀2𝜀3𝑦

⋆𝑧⋆(2 + (𝜙+ 𝜙1)𝑥⋆)
(1 +𝜙𝑥⋆)(1 +𝜙1𝑥

⋆)

]
,

thus according to Lemma 3.2, 𝐸5 under the following conditions are 
asymptotically stable for all 𝛼 ∈ (0, 1).

𝜀1 < 𝜌+ 𝜂 − 𝛾𝛾1, 𝜀2 >
𝜓𝜔1

1 +𝜙𝜔1
, 𝜀3 >

𝜂𝛽𝜔1
1 +𝜙1𝜔1

, and

𝜓𝜀23 + 𝜂𝛽𝜀22 > 𝜓𝜀23𝛾1 + 𝛽𝜀22𝛾 −
𝜓𝜔

𝛾𝛾1
𝛽𝜀1𝜀2,

where 𝛾 =
𝜀3(1 +𝜙1𝜔)

𝛽𝜔
, 𝛾1 =

𝜀2(1 + 𝜙𝜔)
𝜓𝜔

, 𝜔1 = 1 − 1
𝜌

[
𝛾𝛾1 + 𝜀1 − 𝜂

]
, and 

𝜔 ∈ℝ+ (Fig. 3d).
5

4. Physical interpretation of the models

In this section, we have numerically [42] simulated both systems 
(4) and (6) under the stability conditions found in the previous section. 
Also, we presented some possible physical explanations for the obtained 
results.

From the simulations presented in Figs. 2 and 3, the effect of reduc-
ing the order of the time derivative can be seen. As the fractional order 𝛼
is decreased, the system (with Caputo derivative) stabilises faster. That 
is the higher “memory” the system has of past states, the greater the 
damping of oscillations in system dynamics. The simulations demon-
strate that, even with quite moderate reductions in 𝛼, the amplitude of 
population density oscillations is strongly retarded.

From the numerical simulations we see that the harvesting appears 
to enhance the stability of the system. When no harvesting is conducted, 
oscillations in the population numbers are immense (Fig. 4a). Once at 
least one of the harvesting parameters is non-zero these oscillations are 
damped out (Fig. 4b), aligning with the earlier results presented in the 
literature [15, 20].

We emphasize the novel relationship between memory concept and 
harvesting. The numerical integration of system (4) (blue lines) indi-
cates that when interaction among species is immense, such that the 
population numbers fluctuate wildly, harvesting could be a solution 
to stabilise the system. For some parameter values, harvesting works 
less well as a stabilising mechanism and could destabilise the coexis-
tence fixed point of the system (Fig. 4c). In other words, the modelling 
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Fig. 3. The damping of population oscillations produced by system (6) with integer (a) and fractional order (b). (c and d): Phase portrait of the integer and fractional 
system respectively. The initial densities (0.2,0.3,0.3), (𝜌, 𝜓, 𝛽) = (0.61, 1, 7), (𝜙, 𝜙1) = (1.4, 0.02), (𝜀1, 𝜀2, 𝜀3) = (0.12, 0.43, 0.06) and 𝜂 = 0.01.
assumption of the “largeness” of the population, allowing the use of 
differential equations, may very well breakdown. In these situations, 
harvesting reduces the range of values through which the population 
numbers fluctuate (thus reducing the time for the system to settle at 
equilibrium) but also shifts the range to lower values. The stability of 
the fixed point as per the stability condition is likely incorrect because 
the population returns to healthy levels after having dropped to num-
ber better interpreted as having gone extinct (Fig. 4c). To smooth out 
this inconsistency, our findings suggest that another parameter, defined 
as species’ memory, should be incorporated in the model (Fig. 4d). A 
possible explanation for this could that when species are heavily har-
vested, they rely much more on their memory to prevent the species 
extinction. For example, if they are heavily harvested during the spring 
season, they produce more offspring intrinsically during that period to 
make up their lack of population. In other words, they might have a 
variable growth rate to compensate for the different physical circum-
stances from one breeding season to another; they might find a safer 
place to reproduce so that they reduce the death-rate of infants, or even 
migrate to another place where they can decrease mortality rates of off-
spring through less exposure to predators. Therefore, we believe that 
such scenarios could be explained by the memory concept.

5. Discussion

The mutualistic interactions amongst species is of great importance 
in the field of conservation ecology, so gaining an understanding of 
6

such interactions can make a noteworthy contribution to species main-
tenance. With this in mind, we introduced a modified Lotka-Volterra 
model to study interaction amongst three species with mutualistic pre-
dation. The motivation is based on the observed feeding behaviour of 
spotted dolphins and yellowfin tuna upon schools of lanternfish. Along 
with obtaining the stability conditions for the model, we also investi-
gated the impact of “memory effects” on the species interaction via frac-
tional calculus. Our analysis reveals that the fractional system dampens 
out induced oscillating inherent in predator-prey models and reaches 
the local stable point sooner than the integer model does. In other 
words, stability is more robust when the species exhibit “memory”.

Moreover, assuming that either both species have market value or 
that one species is caught as by-catch, we have investigated the effect 
of constant rate harvesting within the proposed models. We have also 
discussed the local stability behaviour of all the equilibrium states of 
the system. The output of all models shows that stability and extinc-
tion of the ecosystem are affected by economic interest/harvesting. In 
fact, applying constant harvest at a rate below the threshold of the sta-
bility condition causes the system to stabilise faster. In other words, 
exploitation of a species can be regarded as beneficial to the ecosystem 
as a whole as the system will reach steady-state sooner. Further, the 
greater the collaboration among species (large mutualism coefficients), 
the more harvesting that can occur before putting the populations at 
risk of extinction (over-fished).

An assumption of a differential equation based population models is 
that the quantities under consideration are sufficiently large such that 
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Fig. 4. The impact of harvesting upon the system (4) with fractional order (0 < 𝛼 ≤ 1), 𝜌 = 1, 𝜓 = 15, 𝜙 = 2 and (𝑥(0), 𝑦(0)) = (0.2,0.1).

Fig. 5. Phase plane of system (4) with integer order derivative (5a) and fractional order derivative (5b). All initial densities are (𝑥, 𝑦) = (0.2, 0.15) with parameter 
values (𝜌, 𝜓, 𝜙, 𝜀1, 𝜀2) = (1, 50, 0.02, 0, 0). For these parameter values criterion (15) holds.
7
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the addition or loss of an individual to that population may be con-
sidered an infinitesimal change. That is, the population may take on 
a continuum of values rather than being strictly discrete. Further, it is 
well known that many such models can exhibit, for certain parame-
ter values and initial conditions, large fluctuations — particularly those 
with Hopf bifurcations — whereby the assumption of the “largeness” of 
the population may very well breakdown Fig. 5. In practical terms the 
population has either already gone extinct, even though the model pre-
dicts a return to healthy levels, or its reduced to a level vulnerable to 
external perturbations such that it future viability should be discussed 
in probabilistic terms. These issues imply the model should incorporate 
stochasticity at low population levels. Alternatively, assuming a mem-
ory like behaviour can be attributed to the population, a non-integer 
order time derivative arguably extends the validity of the model by 
preventing the wild swings in population numbers that represent ‘es-
sentially extinct’ to ‘thriving’ (Fig. 5a).

It has been argued that ecological systems, while being stable for 
moderate numbers of species interactions or moderate strength of 
the inter-species connections, will become unstable to small perturba-
tions once some threshold value for interaction number or interaction 
strength is breached [43, 44]. In 2012, similar findings were presented, 
claiming that any feasible co-existence of the system species will be 
unstable when the pair-wise competitive interactions are sufficiently 
strong [45]. Further, Goh presented findings that the continuum of glob-
ally stable Lotka-Volterra models of mutualism among three or more 
species is smaller than the continuum of globally stable Lotka-Volterra 
models of competition among the same number of species [46]. Thus, if 
diversity has an adverse effect on stability in competitive system it has 
even more so in mutualistic ones.

More recently, however, Butler and O’Dwyer have to some extent 
overturned this understanding through proposing a consumer-producer-
resource model. They demonstrated, for a model of 𝑁 bacteria species 
consuming 𝑁 abiotic resources that the stability is guaranteed for all 
feasible equilibria. For an extension of the model where the bacteria 
also produce some or all of the resources to mutual benefit of all con-
sumers, stability of all feasible solutions can be guaranteed provided 
that mutualistic interactions are symmetric [47].

Our system, on the other hand, is one with moderate to strong in-
teractions between mutualistic predators and a prey (biotic resource) 
species. Our formulation allows weak to strong memory effects via 
the fractional derivative order. The three-species model suggests the 
stability at the co-existence is not guaranteed by symmetric mutual-
ism. Rather, the model needs to have a memory to satisfy the stability 
condition. As future work we will investigate how stability of feasible 
solutions in the model changes as the number of predators and prey 
increase.
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Table 1. Asymptotic stability analysis of system (4). The notation ✓ indi-
cates that the relevant condition is satisfied.

System (4)

𝐸𝑖: Equilibrium point Stability conditions Fig. 2
𝐸1: Extinction point 𝜌 < 𝜀1

𝛼 ≤ 1
…

𝐸2: Predator-free point 𝜓 < (1 + 𝜀2) 
[

𝜌

(𝜌−𝜀1 )
+𝜙

]
𝛼 ≤ 1

…

𝐸3: Coexistence points 𝜔 < 1 − 𝜀1
𝜌

𝑏2 − 4𝑐 < 0
𝛼 <

2
𝜋
| arg(− 𝑏

2
± 𝑖

√
4𝑐−𝑏2
2

)|
0.13 < 1 − 0.4 →✓
(0.53)2 − 3.7 < 0 →✓
𝛼 ∈ (0, 1.178) →✓

Additional information

No additional information is available for this paper.
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Appendix A

The stability conditions given in section 3, are summarised in two 
general tables. In Table 1, we have defined the following notations:

𝑏 = −Tr(𝐉(𝐸3)), 𝑐 = det(𝐉(𝐸3)), and 𝜔 = (1 + 𝜀2)∕(𝜓 − 𝜙(1 + 𝜀2)).

In Table 2 also, we have the following notations for 𝐸𝑖(𝑖 = 3, 4, 5):

• In 𝐸3, known as partial co-existence point

𝜔 =
𝜀2

𝜓 − 𝜀2𝜙
, 𝛾 = 𝜌(1 −𝜔) − 𝜀1, and

𝛼1 = min{1, 2
𝜋
| arg(−𝜌𝜔

2
± 𝑖

√
4𝜓𝜔𝛾∕(1 + 𝜙𝜔)2 − (𝜌𝜔)2

2
|}

• In 𝐸4, known as partial co-existence point

𝜔 =
𝜀3

𝜂𝛽 − 𝜙1𝜀3
, 𝛾 = 𝜌(1 −𝜔) − 𝜀1, and

𝛼1 = min{1, 2
𝜋
| arg(−𝜌𝜔

2
± 𝑖

√
4𝜂𝛽𝜔𝛾∕(1 + 𝜙1𝜔)2 − (𝜌𝜔)2

2
)|}

• In 𝐸5, known as co-existence point

𝜔1 = 1− 1
𝜌

[
𝛾𝛾1 + 𝜀1 − 𝜂

]
,𝜔 ∈ℝ+, 𝛾 =

𝜀3(1 +𝜙1𝜔)
𝛽𝜔

, and 𝛾1 =
𝜀2(1 +𝜙𝜔)

𝜓𝜔
.
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Table 2. Asymptotic stability analysis of system (6). The notation ✓ indicates that the relevant 
condition is satisfied.

System (6)
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