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Dispersal is an important form of social behaviour
which encapsulates the trade-off between cooperation
and competition. Competition for resources among kin
favours the evolution of dispersal. The evolutionarily
stable (ES) level of dispersal can be determined from an
inclusive fitness analysis of the reduction in competition
with relatives and the cost of dispersal. The population
structure determines the relatedness between individuals
and the level of competition among kin. Populations are
frequently described with a patch (Wright's infinite
island) or lattice structure (e.g. stepping-stone, Kimura
1953). Carefully constructed models are necessary to dis-
cover which features of structured populations affect the
evolutionarily stable level of dispersal.

The evolution of dispersal has been analysed under a
variety of conditions. Hamilton and May (1977) first
showed that costly dispersal in a homogeneous patch-
structured environment can be favoured because it
reduces the competition among relatives. Their basic
model has been generalized to describe patches with
more than one individual per patch, offspring control,
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sexual reproduction, and other genetic systems with
similar results (Comins et al. 1980, Motro 1982a, 1982b,
1983, Frank 1986, Taylor 1988). At the heart of each
model is a description of the population-genetic structure
which determines the relatedness between an actor and
other individuals.

Many dispersal models assume all adults die at the end
of every generation. Although this is a realistic reflection
of many plant and animal populations, many species
have overlapping generations. The degree of overlap
between generations is determined by the survival prob-
ability of adults. Increasing survival of reproductively
active adults affects relatedness. In a patch-structured
population, increasing survival increases the relatedness
between individuals on the same patch (Pen, 2000) and
promotes increased dispersal (Taylor and Irwin, 2000).

Our objective is to determine the ES dispersal rate in
one- and two-dimensional stepping-stone populations
with overlapping generations. We use Hamilton's (1964)
inclusive fitness method to analyse the selection on a
mutant gene for a deviant rate of dispersal. The method
adds up the effect of the behaviour on the fitness of all
individuals weighted by their relatedness to the actor; if
the sum is positive, the behaviour is favoured. This
approach highlights the tradeoff between the benefit of
dispersal to close relatives and the cost to the disperser.
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We find that the ES dispersal rate in a stepping-stone
population increases with increasing survival probabil-
ity. In one dimension, we obtain a simple formula for the
ES dispersal rate. In two dimensions the dispersal rate
cannot be found explicitly and we present numerical
results. Olivieri et al. (1995) found an analogous result
with a computer simulation of a metapopulation model
and Venable and Levin (1983) found that annual plants
tend to have shorter dispersal ranges than perennial
species.

THE MODEL

We study a population structured by placing sites in a
one- or two-dimensional square lattice. The population
is infinite, with one asexually reproducing haploid adult
per site. Each individual produces a large number of off-
spring. These disperse equally among adjacent sites with
total probability d. In one dimension, there are two
neighbours and a fraction d�2 of the juveniles disperse to
each and in two dimensions, there are four neighbours
which each receive a proportion d�4 of the individuals.
Dispersal is costly; the fitness of a dispersing juvenile is
reduced by increased predation or other factors. Mathe-
matically we describe this by assuming that only a
proportion 1&k of dispersing juveniles arrive at a new
site. We create overlap between generations by allowing
adults to survive and breed again with probability s. If an
adult survives, it is guaranteed to retain the breeding
resources on its site. If it dies, the offspring, both native
and immigrant, compete on an equal basis for the vacant
site. Offspring which do not win a site die and the cycle
begins again. We determine the ES dispersal rate by find-
ing the inclusive fitness effect of a mutant with a slightly
altered dispersal probability.

We make two different approximations in our calcula-
tions. We introduce an additional dispersal rate + which
brings in unrelated individuals from infinity and can be
thought of as a mutation rate (Crow and Kimura, 1970,
p. 267). This additional dispersal is necessary because in
the absence of long-range dispersal or mutation the equi-
librium relatednesses are all 1 on the one- and two-
dimensional lattice. Our first approximation is to include
terms of order - + and ignore + terms in the relatedness.
This simplifies the calculation of relatedness between the
actor and nearby individuals, with the effect that even in
a neutral population, our relatedness coefficients are only
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calculated approximately. Second, we assume the mutant
allele codes for a small deviation $ in the dispersal rate.
The inclusive fitness result should be valid for small $; to
be precise it is exact to first order (Taylor, 1996).
CALCULATION OF RELATEDNESS

Relatedness in One Dimension

We calculate relatedness with a one-generation recur-
sion assuming all offspring disperse at the same rate. Let
rj be the average relatedness of an individual to one j sites
to the right in the one-dimensional lattice. The related-
ness in the next generation r$j is a weighted average of
relatednesses in the current generation,

r$j={
A(rj&2+rj+2)+B(rj&1+rj+1)

+Crj+Dr� ,
1,
0,

j{0,
j=0,
j=�,

(1)

where

A=p1 p&1

B=p0 p1+ p0 p&1

C=p2
0+ p2

1+ p2
&1

D=2p� (1& p�)+ p2
�

and pi is the probability that a patch is won by an
individual from a site i steps to the right. For example,
the weight A is obtained by noticing that the distance
between parents and their offspring can change by 2 in a
generation only if offspring from each site disperse 1 step
in opposite directions. The weight D is the probability
that individuals j sites apart are unrelated, which can
happen in two ways: if one comes from infinity and the
other does not (with total probability 2p� (1& p�)) or
both come from infinity ( p2

�). With no external pressures
on dispersal, we expect symmetric dispersal and set
p&1= p1 . Values for p i are in Table I. There is a useful
relationship between values of pi for the general case and
for the case s=k=0. Substituting d� and +̂ for d and + in
the pi for nonoverlapping generations and zero-cost dis-
persal obtains the general pi if the modified dispersal
rates are defined by

d� =d(1&s)
1&k

Irwin and Taylor
\1&k(d++)+
(2)

+̂=+(1&s) \ 1&k
1&k(d++)+ .



TABLE I

Probability That the Winner of a Site Came from a Site i Units Away pi

pi

i k=0, s=0 General case

0 1&d&+ 1&d� &+̂=
1&(d++)(1&s+sk)

1&k(d++)

1
d
N

d�
N

=
d(1&s)(1&k)
N(1&k(d++))

� + +̂=
+(1&s)(1&k)

1&k(d++)

Note. i=0 means the winner was native, i=1 means the winner
was a neighbour, and i=� means the winner was not related to the
previous occupant. Several sites are one unit away; each is counted
separately. In one dimension there are two (N=2) and in two dimen-
sions four (N=4). The dispersal rate is d, the probability of survival is
s, and the cost of dispersal is k.

A standard method for analysing Eq. (1) transforms
the recursion into a linear system of four first-order dif-
ference equations (Kimura and Weiss 1964, Taylor
1994). Solving the recursion for the relatedness between
neighbours and next-nearest neighbours yields

r1 =1&8

(3)
r2=1&4 \

- 1&d� &1+d�

d� + 8,

where 8=-
2+̂

d� (1&d� )
+O(+).

The reduction to a system of first-order difference
equations cannot be adapted to compute relatedness in
two or three dimensions. Another approach, introduced
by Weiss and Kimura (1965), can be used with a regular
lattice of any dimension (see also Male� cot 1975). We use
this method to find the relatedness between individuals
on nearby sites in a two-dimensional stepping-stone
population.

Relatedness in Two Dimensions

We define rj, k to be the relatedness of a focal individual
to an individual j sites away in the horizontal direction
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and k sites away in the vertical direction in the lattice. It's
convenient to write these relatednesses in an infinite
matrix r=[rj, k] for all j, k # Z. Following the recursion
above (Eq. (1)), we write a recursion for relatedness in
the next generation in terms of relatedness in the present
generation,

r$={L2 r,
1,

( j, k){(0, 0),
( j, k)=(0, 0),

(4)

where

L=p0+ p1 (S1+S &1
1 +S2+S &1

2 )

=1&d� &+̂+
d�
4

(S1+S &1
1 +S2+S &1

2 ). (5)

The Si are shift operators on the relatedness matrix
which move all the entries left or down one step,

S1[rj, k]=[r j+1, k]

S2[rj, k]=[r j, k+1].

The operator L disperses offspring with each term; the
first term keeps a fraction p0=1&d� &+̂ at the natal site,
and the next four terms send p1=d� �4 to each of the
nearest neighbours. L2 appears in Eq. (4) because we
need a weighted sum of relatednesses for juveniles com-
ing from any of the five sites for each juvenile (ignoring
unrelated individuals dispersing from sites infinitely far
away; see Fig. 1). The recursion (Eq. (4)) holds for step-
ping-stone dispersal in a lattice of any dimension with an
appropriate choice of L. For example, a recursion for one
dimension can be obtained from (Eq. 4) by defining
L=1&d� &+̂+ d�

2(S+S &1), where S is the shift operator
on an infinite vector of relatedness [rj].

We find the relatedness coefficients at equilibrium by
solving Eq. (4) with r$=r. It is straightforward to verify
that

L[cos( j%1) cos(k%2)]

=H(%1 , %2)[cos( j%1) cos(k%2)], (6)

where

H(%1 , %2)=1&d� &+̂+
d�
2

(cos %1+cos %2). (7)

This says that for each %1 and %2 , L has an eigenvector
[cos( j%1) cos(k%2)] with eigenvalue H(%1 , %2). We intro-
duce a function F(%1 , %2) which is a linear combination of
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these eigenvectors with the rj, k as weights,

F(%1 , %2)=:
j, k

rj, k cos( j%1) cos(k%2). (8)



FIG. 1. Dispersal pattern in a two-dimensional stepping-stone
population. The mutant's (black) deviant dispersal rate changes the
number of competitors on its own site and the 4 nearest neighbours
(grey). This affects the fitness of individuals born on all the sites shown.
Each different class of site is labeled with its relatedness to the mutant.

The rj, k are the Fourier coefficients of the function F and
can be recovered with the Fourier transform of F,

rj, k =
1

(2?)2 |
2?

0
|

2?

0
F(%1 , %2)

_cos( j%1) cos(k%2) d%1 d%2 . (9)

Now, apply (1&L2) to Eq. (9),

(1&L2) r=
1

(2?)2 |
2?

0
|

2?

0
F(%1 , %2)(1&L2)

_[cos( j%1) cos(k%2)] d%1 d%2 , (10)

and use the eigenvectors of L, Eq. (6), to obtain

[(1&L2) r] j, k
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=
1

(2?)2 |
2?

0
|

2?

0
F(%1 , %2)(1&H2 (%1 , %2))

_[cos( j%1) cos(k%2)] d%1 d%2 . (11)
The left-hand side of Eq. (11) is the vector of Fourier
coefficients of F(1&H 2) and it follows from Eq. (4) that
they are given by

[(1&L2) r] j, k={0,
c,

( j, k){(0, 0),
( j, k)=(0, 0),

(12)

where c is a constant to be determined later. Since all the
Fourier coefficients of F(1&H2) are 0 except at j=k=0,

F(%1 , %2)=
c

1&H2 (%1 , %2)
. (13)

Now combine Eqs. (9) and (13) to obtain a formal
solution to the recursion

rj, k=
c

(2?)2 |
2?

0
|

2?

0

cos( j%1) cos(k%2)
1&H2 (%1 , %2)

d%1 d%2 (14)

with the constant c determined by r0, 0=1. The problem
now is to evaluate these integrals.

In one dimension analogous arguments show that

rj =
c

4? |
2?

0
cos( j%)

_\ 1

+̂+d� &d� cos %
+

1

2&+̂&d� +d� cos %+ d%.

These integrals can be evaluated to obtain the results in
Eq. (3).

In two dimensions the integrals must be simplified
using various ingenious transformations (see the
Appendix). Exact formulae for the first two relatedness
coefficients needed in the dispersal analysis are

r0, 1 =
K(a1)&K(a2)

a1K(a1)+a2K(a2)
(15)

r1, 1=

(z1&a1) K(a1)&z1E(a1)
+(z2&a2) K(a2)&z2E(a2)

a1K(a1)+a2K(a2)
, (16)

where ai and zi are in Eqs. (27) and (32) and K and E are
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complete elliptic integrals of the first and second kinds,
respectively (Abramowitz and Stegun 1964). Other
relatedness coefficients have more complicated formulae
but can be computed as indicated in the Appendix.



ANALYSIS OF DISPERSAL

We now find the ES dispersal rate in one- and two-
dimensional stepping-stone populations with overlap-
ping generations. A mutant adopts a deviant dispersal
probability d $=d+$. The inclusive fitness effect of the
mutant is the sum over the whole population of the fit-
ness change due to the mutant for each individual
weighted by its relatedness to the mutant:

2wIF=:
i

2wiri .

The fitness of a breeder on site i is the expected number
of its breeding descendents on all sites in the next genera-
tion. This is the sum of the probability of survival s and
the expected number of offspring which obtain a breeding
spot. If an adult on site i sends nij offspring to compete on
site j, there will be nj=�k nkj juvenile competitors on site
j. The probability an offspring from site i wins site j is the
product of the probability the current occupant dies and
nij �nj . Thus, the fitness of the adult on site i is

wi=s+(1&s) :
j

n ij

n j
. (17)

The change in fitness due to mutant behaviour on site i
is

2wi=w$i&wi=(1&s) :
j \

n$ij
n$j

&
nij

nj + . (18)

In a one-dimensional stepping-stone population, the
nonzero nij are

nii =1&d&+

ni, i\1=
d
2

(1&k).

The mutant only affects dispersal away from the origin,
so the only n$ij which differ from nij in the previous genera-
tion are

n$00 =1&d $&+

n$0, \1=
d $
2

(1&k).

The mutant affects the fitness of individuals one and two
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steps away because it changes the number of competitors
on its own site and sites one step away. The fitness
changes are obtained by substituting these nij into
Eq. (18),
2w0 =(2&3d&kd )
(1&k)(1&s) $

2(1&kd )2

2w1=&(1&2d )
(1&k)(1&s) $

2(1&kd )2 (19)

2w2=
&d(1&k)2 (1&s) $

4(1&kd )2 .

Selection is weak so we include only terms linear in $ and
we ignore terms O(+) since we only retained terms O(- +)
in the relatednesses. The mutant gene is favoured if

2wIF=2w0+22w1r1+22w2r2>0, (20)

using the relatedness from Eq. (3). The ES dispersal rate is

d*=
1

2k
}
2(1&- 1&k(1&k)(1&s))&k(1&s)

1&- 1&k(1&k)(1&s)&k(1&s)
. (21)

If dispersal has no cost (considering the limit k � 0) then

d*=
3+s

4
. (22)

In a patch-structured population with no cost of dis-
persal, the ES dispersal rate is 1 because dispersing off-
spring do not compete with relatives (Hamilton and
May, 1977). In a stepping-stone population, dispersers
always compete with relatives, so even with no dispersal
cost, only partial dispersal is favoured (Eq. (22)).

In two dimensions, the method of calculation is the
same, but more sites are affected by the mutant. A change
in its dispersal rate affects the number of competitors on
its site and on the nearest-neighbour sites. The fitness of
individuals which disperse offspring to any of these five
sites must be included in the inclusive fitness. In total,
individuals on 13 sites are affected, representing four dis-
tinct relatedness groups as shown in Fig. 1. The change in
fitness of individuals on these four groups of sites to first
order in $ is

2w0, 0 =(4&5d&3dk)
(1&k)(1&s) $

4(1&kd )2

2w0, 1= &(1&2d)
(1&k)(1&s) $

4(1&kd)2

(23)
(1&k)2 (1&s) $
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2w1, 1= &d
8(1&kd )2

2w0, 2= &d
(1&k)2 (1&s) $

16(1&kd )2 .



The inclusive fitness effect is obtained by adding these
together, weighted by their relatedness and the number
of each different site type,

2wIF =2w0, 0+42w0, 1 r0, 1+42w1, 1 r1, 1

+42w0, 2 r0, 2 . (24)

The ES dispersal rate d* is a solution of

2(2d*sk&s&1) K \ (1&s)(1&k) d*
d*(1&s+k+sk)&2+

+?(2&d*(1&s+k+sk))=0. (25)
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FIG. 2. Evolutionarily stable dispersal rates. Starting from the top
the lines correspond to the patch model (N=1, solid), the 2-dimen-
sional stepping-stone with four neighbours (dashed), and the 1-dimen-
sional stepping-stone (dotted). Zero-cost dispersal (A) and k=0.1 (B)
are shown.
Figure 2 shows the ES dispersal rate as a function of s for
one- and two-dimensional stepping-stone populations as
well as a patch structure with k=0 and with k=1�10 (see
Taylor and Irwin 2000).

DISCUSSION

We analyse the evolution of dispersal in one- and two-
dimensional stepping-stone populations. Our main result
is that increasing the survival rate of reproductively
active adults promotes greater dispersal rates. This is a
result of the effect of survival probability on the related-
ness between neighbours. As survival increases, the
relatedness between neighbours decreases. Another way
to think about this is that survival tends to increase the
between-site genetic variance because the ``mixing''
effects of dispersal are reduced, even with the same off-
spring dispersal rate. A variety of factors affect the
balance between competition and dispersal costs.

Increasing the cost of dispersal results in a smaller ES
dispersal rate. A greater dispersal cost decreases the
inclusive fitness due to dispersing offspring for a given
dispersal rate. This provides a marginal benefit to
increasing the proportion of non-dispersing offspring
despite the increased competition with relatives. This is
consistent with previous studies of patch-structured pop-
ulations with non-overlapping generations (Hamilton
and May 1977, Motro 1982a, 1982b, Frank 1986, Taylor
1988).

In our model, competition among relatives can be
reduced by increasing the dispersal rate. An interesting
extension allows variable dispersal rates over a range of
dispersal distances. Competition among relatives is
reduced by dispersing farther and by spreading dispersed
offspring over a range of sites. Preliminary results
indicate that as greater dispersal distances are permitted,
more offspring disperse from the natal site to more dis-
tant sites. If dispersal costs increase with distance, most
of the offspring disperse to a band of sites neither
adjacent to, nor very distant from the natal site.

We compare the stepping-stone populations to a
patch-structured population with one individual per
patch (Fig. 2, Taylor and Irwin 2000). In a patch-struc-
tured population individuals can disperse from one patch
to any other, but in a stepping-stone population dis-
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persers can only arrive from neighbouring sites (ignoring
the small dispersal rate from infinity). In this sense, a
patch population is the limit of a stepping-stone population
as the number of neighbours goes to infinity and the



relatedness between neighbours goes to zero. The ES dis-
persal rate in stepping-stone populations increases as the
number of neighbours increases and the ES dispersal rate
for the N=1 patch population is greater than in either
stepping-stone population. An extra difference is that the
ES dispersal rate is independent of survival probability s
for the N=1 patch population. This is understandable
because the effect of s on relatedness vanishes when the
relatedness between different individuals is 0.

In one dimension, we obtain an analytic expression for
ES dispersal, including a remarkably simple result when
there is no cost of dispersal (Eq. (22)) The two-dimen-
sional problem is inherently more complicated, but we
work with standard special functions and can compute
exact numerical dispersal rates without requiring simula-
tions. The two-dimensional stepping-stone population
has obvious application to communities which live on a
surface, but the one-dimensional lattice may be superior
for examining a population in an edge habitat (e.g.,
alpine or coastal).

An important difference between one- and two-dimen-
sional stepping-stone populations is that there are more
interacting neighbours in two dimensions. Similar to
increasing the patch size, this is expected to decrease
relatedness between neighbours and favour increased dis-
persal and indeed our results show that the ES dispersal
rate is greater in a two-dimensional stepping-stone
population than in one dimension (Fig. 2).

Gandon and Rousset (1999) recently studied dispersal
in the same population structures but with non-overlap-
ping generations and finite populations, reporting results
consistent with ours. Inclusive fitness calculations in
finite populations present special challenges. Gandon
and Rousset (1999) and Rousset and Billiard (2000) for-
mulate relatedness in terms of the probability genes are
identical in state. An alternative identity by descent for-
mulation for a model of altruism in patch and stepping-
stone structured populations is found in Taylor and Day
(2000) and Taylor et al. (2000).

At the centre of the analysis of dispersal is a tension
between local competition and the cost of dispersal. Off-
spring which remain on their natal patch are likely to
compete with sibs, while those which pay the cost of dis-
persal are more likely to compete with more distant
relatives. Dispersal can be viewed as a kind of altruism
because dispersers have a reduced chance of surviving to
compete and non-dispersers benefit from reduced com-
petition. Recently it was shown that increased survival
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promotes altruism in a patch-structured environment
(Taylor and Irwin 2000) and our results show that a
similar effect holds in lattice populations, at least for
dispersal behaviour.
APPENDIX

Computing relatedness coefficients is technically more
complicated in two dimensions than in one dimension.
The necessary calculations appeared in Weiss and
Kimura (1965) and Comins (1982) but we have sim-
plified them for our purposes. First we rewrite Eq. (14)
using a partial fraction expansion, 1

1&H2= 1
2 ( 1

1&H+ 1
1+H),

and write the two terms with a convenient notation,

rj, k=c(Aj, k (z1)+(&1) j+k Aj, k (z2)), (26)

where

Aj, k (z)=
1

(2?)2 d� |
2?

0
|

2?

0

cos( j%1) cos(k%2)
z&cos %1&cos %2

d%1 d%2

and

z1 =2+
2+̂

d�
(27)

z2=2 \2&+̂

d�
&1+ .

The factor (&1) j+k comes from the substitution %=%� +
?, which introduces negative signs in the denominator
and a factor of cos( j?) cos(k?)=(&1) j+k.

We evaluate the Aj, k(z) in two ways. If j=k then we
can simplify the integrals using special functions even-
tually obtaining forms involving elliptic integrals. If j{k
we use trigonometric identities to express the integrals in
terms of Aj, j (z).

On the diagonal j=k we transform the denominator
using 1

2=��
0 e&zt dt, which allows us to introduce Bessel

functions with imaginary argument and Legendre func-
tions of the second kind to get

Aj, j (z)=
1

d� |
�

0
e&ztI 2

j (t) dt

=
(&1)n

d� ?i
Q j&1�2 \1&

z2

2 + (28)

(Watson 1958). This can be written using elliptic
integrals as

2 2
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A0, 0(z)=
?z

K \z+ (29)

A1, 1(z)=
1
? \z&

2
z+ K \2

z+&
z
?

E \2
z+ , (30)



and Aj, j (z) for j>1 can be evaluated recursively,

Qn+1�2(&z)

=
2z

2n+1

__\n&
1
2+ Qn&3�2(&z)&2nQn&1�2(&z)& . (31)

Off-diagonal elements are evaluated with algebraic
manipulations and trigonometric identities. For example,
the integrand in A0, 1 can be rewritten

cos %2

z&cos %1&cos %2

=&1+
z&cos %1

z&cos %1&cos %2

,

so A0, 1=&1
2+ z

2A0, 0 . Similarly, A0, 2 can be rewritten
using the identity cos 2%=2 cos2 %&1 and the mani-
pulation used for A0, 1 , giving

A0, 2=2zA0, 1&2A1, 1&A0, 0 .

In the text, the arguments of the elliptic integrals are
abbreviated as

a1 =
2
z1

=
d�

d� ++̂
(32)

a2=
2
z2

=
d�

2&d� &+̂
.
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