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Very little attention has been given in the literature to the interesting question of how to handle relatedness in finite
populations. The main problem is that a finite population is never really “at equilibrium” in that it represents just one
realization of an infinite assemblage of possible allelic distributions. A recent paper of Rousset and Billiard (manu-
script) provides coefficients which, if used in inclusive fitness models under conditions of weak selection, give us a
measure of average allele frequency change where the average is taken over all such realizations. Their coefficients
are expressed in terms of identity in state, and an alternative formulation (Taylor and Day, manuscript) in terms of
coefficients of consanguinity permits the calculation of relatedness in simple cases from pedigree analysis. Here we
implement these calculations in a finite asexual haploid population with either a deme structure or a one-dimensional
stepping-stone structure and verify our results with numerical simulations in small populations. Our simulations al-
low us to investigate the dependence of relatedness on allele frequency, and our results here agree qualitatively with
those obtained by Rousset and Billiard. Finally, we examine a model of altruism in a deme-structured population to

verify numerically that our relatedness coefficients provide a correct measure of allele frequency change.
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1. Introduction

In the study of the evolution of behaviour we typi-
cally want to know whether a certain behavioural
trait is evolutionarily stable in the sense that it will
resist invasion by an alternative “deviant” behav-
iour. Under certain general assumptions, the method
of inclusive fitness (Hamilton, 1964) provides a
powerful way to answer this question. The inclusive
fitness effect of a deviant individual (the actor) is de-
fined to be the sum of the fitness effects of the devia-
tion, not only on the actor itself, but on all “recipi-
ents” each such recipient weighted by its relatedness
to the actor. If the behaviour is genetically deter-
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mined, simple assumptions on gene action (e.g. that
the effects on fitness be additive and small) will al-
low the sign of the inclusive fitness effect to tell us
whether or not the deviant behaviour will invade. To
be precise, ifalleles A and B code for the deviant and
normal behaviour respectively, then the allele A will
increase in frequency when introduced into a B pop-
ulation precisely when its inclusive fitness effect is
positive (Michod and Hamilton, 1980; Seger, 1981;
Grafen, 1985; Taylor, 1996).

To illustrate these ideas, we look at a simple ex-
ample of altruistic behaviour in a haploid popula-
tion. Let a deviant actor (with allele A) augment the
fitness of a random neighbour by a small amount b
while incurring a small cost ¢ to its own fitness. Sup-
pose the population has size N and the frequency of
A is g. Then to calculate the increase in ¢ in one gen-
eration due to a single deviant act, we need to know
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the probability » that this random neighbour also has
the allele A. Given r, the numbers of A and B alleles
in the next generation will be
#A:
#B:

gN (1 —c+rb)
(1-gIN+gN{A -r)b

and the new frequency of A is

=t
#AH B

=q[l —c(l —=q)+b(r —p)] (1.1)

where in the simplification we have used the fact
that b and c are small to ignore terms in their squares.
The change in g can be written

Dg=q'—q=q( —q)[—c +DbR] (1.2)
where
rR=""49 (1.3)
l-¢q

The term in square brackets in (1.2) is the inclusive
fitness effect and R in (1.3) is the relatedness of the
actor to its neighbour, and we can see that ¢ in-
creases in frequency when the inclusive fitness ef-
fect is positive.

From the form of (1.3) it would appear that R will
depend on the allele frequency ¢, but this is not clear
as r itself will depend on ¢. An important reformula-
tion of R can be obtained with the concept of identity
by descent. Two alleles are called identical by de-
scent (IBD) if they derive from a common ancestor.
Suppose we can assume that two alleles in the popu-
lation are either IBD or independent (so that they
each have state A with probability ¢ independently
of the state of the other). Define the coefficient of
consanguinity (CC) between the two individuals as
the probability that the two alleles in the two indi-
viduals are IBD, and let G be the CC between actor
and neighbour. Then when actor and neighbour are
IBD, rwill equal 1, and otherwise it will be ¢ so that

r=G+(1-G)q (1.4)
and if we put this into (1.3) we get
R=G. (1.5)
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Since we are working to first order in the deviations
b and ¢, we can calculate R to zeroth order in these
deviations (see 1.3) and therefore G can be calcu-
lated under the assumption that » and ¢ are zero, in
which case A and B are indistinguishable. This tells
us R is independent of allele frequency and usually
provides a way to calculate it from pedigree analy-
sis.

But something is not right. Suppose the “neigh-
bour” happens to be a random individual in the pop-
ulation (with replacement, so that we allow the actor
to interact with itself). Then » = ¢ and from (1.3) we
must have R = 0. But in a finite population, the CC G
to a random individual will certainly exceed zero (in
fact it must exceed 1/N) and this is a contradiction
(Seger, 1981). What went wrong?

What does not hold is our assumption that two al-
leles are either IBD or independent (Rousset and
Billiard, manuscript). This will typically hold in an
infinite population which has attained an “equilib-
rium” distribution of allelic states, and in such a pop-
ulation (1.5) is valid and relatedness is independent
of allele frequency. But in a finite population the sit-
uation is more complicated. It is worth observing
that, in a finite population, » will usually depend not
only on allele frequency ¢ but on the distribution of
the allele and since this will generally change from
generation to generation due to random effects the
calculation of r is problematic in any case.

In short, the question of how to handle related-
ness in a finite population presents difficulties which
have not received much attention in the literature. In
section 2 we recall previous work which provides a
way to circumvent these difficulties and this leads to
formula (2.9) below for relatedness. In section 3 we
use numerical calculation and simulation to check
our relatedness calculations in a deme-structured
population and in section 4 we do the same for a
stepping-stone population. In section 5 we use a
model of altruism in a deme-structured population to
check that our relatedness coefficients really do pre-
dict allele frequency change.

2. Review of past work

Our notation is found in Table 1. We assume that we
have a finite haploid population with two neutral al-
leles A and B, A with frequency ¢, and discrete
non-overlapping generations. Each generation is ob-
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TABLE 1

Notation

population size (# breeders)

number of demes

number of individuals per deme

probability a breeder is native

genotypic value of actor

genotypic value of recipient

mutation rate from B to A

mutation rate from A to B

contrived mutation rate for both alleles

probability contrived mutation is to A

population allele frequency

expectation over all realizations of the population
expectation over all realizations with allele frequency ¢
coefficient of consanguinity between actor and recipient
coefficient of consanguinity between random individuals
in population

coefficient of relatedness

average coefficient of relatedness over all possible real-
izations

average coefficient of relatedness over all realizations
with allele frequency ¢
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tained by sampling individuals (alleles) from the
previous generation according to a set of rules deter-
mined by the structure of the population. In each
generation there is a possibility of mutation with
mutation rates # from B to A and v from A to B. As
generations pass, ¢ will drift under these forces, with
the force of mutation attracting g towards p = u/(u +
v), and the sampling of gametes attracting g towards
the end-points 0 and 1.

Now if we introduce a source of weak selection,
this will provide another force on the evolution of ¢
and our objective is to understand how to make an
inclusive fitness argument (Hamilton, 1964) to esti-
mate the effect of this on ¢. As we have mentioned
above, the problem is that this will generally depend
not only on ¢ itself but on the distribution of the al-
lele and in any particular instance we are unlikely to
know very much about this. An elegant way to get
around this is to use an average measure of allele fre-
quency change over a set of possible “realizations”
of the population (Rousset and Billiard, manu-
script).

To investigate this, assume that the allele A
causes a slight behavioural change and let the fitness
W(X, Y) of a focal individual depend on its own
phenotypic value X and that of a neighbour Y with
whom it interacts. Let these individuals have geno-
typic values x and y and suppose the resulting phe-
notypic changes are dX = dx. and dY = dy for small &
so that fitness can be written to first order in &:

ow ow 0O
WX, Y)=w, +d0 + 2.1
( ) 0 Eﬂyx aYyE 2.1

Then it can be shown (Price, 1970; Rousset and Bil-
liard, manuscript; Taylor and Day, manuscript) that
the average allele frequency change taken over any
class C of realizations has the form

E (Aq)=0KW, +w(p —E.(¢))  (22)
for some positive constant K, where w is the muta-
tion rate, discussed below,

_ow +6WR

=27 O 23
ox oy © (2-3)

I

is the inclusive fitness effect of the interaction over
the class C, and
_E.cov(x, y)

E . cov(x, x) @4

where E_. signals the average taken over all realiza-
tions in the class C. We call R¢ the average related-
ness over the class C though this is a slight abuse of
terminology as it is defined not as an average, but as
a quotient of averages (see Michod and Hamilton,
1980 for a definitive account of relatedness as a quo-
tient of covariances). The covariances in (2.4) are to
be calculated in a neutral population, and with this
convention equation (2.2) is valid to first order in the
fitness deviation 0.

Now what might be a good class of realizations to
take? One obvious candidate is the set of all realiza-
tions with a fixed allele frequency g, since a result of
this type would allow us to see how relatedness var-
ies with ¢. In this case we would write (2.4) as

R = E, cov(x, »)

q

- E, cov(x, X 22

The dependence of R, on g is one of the questions we
are interested in here, but except for small popula-
tions, the calculation of the covariances conditional
on ¢ seems intractable. Another obvious choice is
the set of all possible realizations and for this we use
the subscript A:

_E,cov(x, y)' 2.6)
E, cov(x, x)
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We can regard this as an average over all “possible”
(neutral) populations or we can take a single popula-
tion and track it over a large number of generations
and (2.2) is the average of the changes we would get
if the mutant allele were “activated” in each of these
generations.

In this case, where we take our universe as the set
of all possible realizations, a standard argument
(Crow and Kimura, 1970) shows that when the al-
leles are neutral, the expected frequency of A is

E (@) =u/(u+v)=p 2.7
and (2.2) can be written
E, (Aq)=0KW,. (2.8)

We conclude that at the neutral equilibrium, the in-
clusive fitness effect provides the direction of aver-
age initial allele frequency change due to selection
where the average is taken over all realizations of
the population.

What we would like to have is a formula for R, in
terms of coefficients of consanguinity. Rousset and
Billiard (manuscript) have recently drawn attention
to a number of difficulties in this objective, in partic-
ular the assumption that two alleles are either IBD or
independent. However, Taylor and Day (manu-
script) have shown that we can still have this desir-
able property if the mutation rate is reconstructed.
The idea is to endow both alleles with the same mu-
tation rate w = u + v, and suppose that each allele
mutates to A with probability p and to B with proba-
bility 1 — p (so that an allele can mutate to itself).
Then the effective rate at which B mutates to A is pw
= u and the effective rate at which A mutates to B is
(1 —p)w =, so that as far as the state of an allele is
concerned, there is no distinction between the origi-
nal and this new “contrived” mutation process. The
difference is that under this higher mutation rate two
alleles are less likely to be IBD than before because,
for example, when A mutates to A, we will no longer
consider the new allele to be IBD to the old. Hence-
forth our notion of IBD will assume this contrived
rate. We further assume there is some ancestral pop-
ulation that is far enough back that the probability of
having an IBD copy of any original allele is negligi-
ble.

What we get from this reconstruction is a rigor-
ous argument that if two alleles in the population are

not IBD then they are independent, not within any
single population, but within the universe of all pos-
sible realizations of the (neutral) population. This
leads to the formula:

G-GO
1-G0

A

(2.9)

where G is the CC between the interactants and G*
is the CC between two individuals chosen at random
(with replacement) from the entire population. This
formula makes sense. If, for example, I give a gift of
fitness to a neighbour, this can benefit me (that is, in-
crease the fitness of my genes and their IBD copies)
only if the neighbour is more closely related to me
than is a random member of the population.
Because of the importance of (2.9) for our work
here, we give a sketch of its derivation. Details are
found in Taylor and Day (manuscript). Let x and y be
the genotype of actor and neighbour. If they are IBD
then they are both A with probability p and are both
B with probability 1 — p for a covariance of p(1 — p)
and if they are not IBD then they are independent
with covariance 0. Thus
COV(x,y)=Gp( —p). (2.10)
Note that we are operating here within the universe
of all realizations, and we use uppercase COV to
emphasize that. If we apply the covariance decom-
position theorem to the class of realizations, we get

COV(x,y) =E, cov(x,y) +cov(q,q), 2.11)

where the first term on the right is the average
within-realization covariance and the second term is
the covariance of the average genotypic value be-
tween realizations, noting that x and y both have av-
erage g. [f we put(2.10) and (2.11) together, we get

E,cov(x,y) = Gp(1 —p) —var(q). (2.12)
A special case arises when x and y are chosen inde-
pendently within the population. Then cov(x, y) will
be zero in every realization, and E,cov(x, y) = 0.
Since in this case G = G*, we have

var(q) = G*p(1 - p).

Putting (2.13) into (2.12) we get (2.9). Rousset and
Billiard (manuscript) choose another path around

(2.13)
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the IBD problem and provide a formula analogous to
(2.9) in terms of identity in state.

To calculate G we need to know the population
structure. In an unstructured population, the stan-
dard mechanism is to select offspring independently
from one another by random sampling from the en-
tire gamete pool. In this case a standard argument
(Taylor and Day, manuscript) shows that for small
mutation rates,

G*=1-2w(N-1) (2.14)
to first order in w. [This formula is often reported
with N— 1 replaced by N but this is an approximation
that is reasonable only for large N. For example, if N
=1, there is only one individual, and (2.14) gives the
correct answer G* = 1. See Crow and Kimura (1970,
6.6.2) to view this approximation in action.] Here
we generalize (2.14) and hence calculate R, for two
common structures, a deme or island structure and a
one-dimensional stepping-stone structure.

3. Deme structure

We suppose that we have discrete non-overlapping
generations in a population consisting of d demes of
size n for a total size of N = dn. For example, the
deme might be a breeding patch with »n breeding
sites. We suppose that in each generation a breeder
has a large number of offspring and these either stay
on the home site (we will call these natives) or dis-
perse to a migrant pool, possibly with some cost, and
from there settle on a random deme which may (with
probability 1/d) be their native site. We will call
these migrants even if by chance they return to their
native site. Then on each deme there is fair competi-
tion among all the offspring, native and migrant, for
the n breeding sites. This is the island model of
Wright (1943), studied since that time by many au-
thors. We let k be the probability that a random
breeder is a native. Here we calculate the relatedness
between random individuals (with replacement) on
the same deme. This is the appropriate coefficient
when one of the components of an action affects
equally everyone on the deme, including the actor,
for example, an act of altruism in which the benefit
is shared by all individuals on the deme. This exam-
ple is discussed in section 4.

3.1. Calculation of average relatedness
In Appendix 1 we calculate that

G° = 1 - 2wy - L4
1 -k

and that the CC between two individuals on the
same deme (with replacement) is

3.1)

G =1-2w(N—-d) (3.2)
and is independent of the migration rate. Analogous
formulae have been obtained by Latter (1973) using
a continuous time model instead of discrete genera-
tions. For example, in the notation of our paper, Lat-
ter’s formula for G is obtained from (3.2) by setting
d=0. That is, the continuous analogue of (3.2) is in-
dependent of the number of demes into which a pop-
ulation of fixed size is subdivided (to first order in
the mutation rate w).

Using (2.9) we get the average relatedness of an
individual to a random individual on the same deme
to be:
= d-1 . (3.3)

N-1-k*(N —d)

As a check we look at a few special cases. If we set
d =1 the deme is the entire population and G should
equal G* and from (2.9) that makes R, = 0 as ex-
pected. If d = N, then each deme is a single individ-
ual and we expect G = 1 and R, = 1, as indeed they
are. If we set £ = 0 then everyone migrates and we
have a panmictic population of size N, and G*
should coincide with (2.14), as indeed it does. In this
case, the demes are essentially formed at random,
andR, = (d—1)/(N—1). Finally if we set k = 1, there
is no migration and each deme is an isolated popula-
tion of size n. In this case we might expect R, =0 (as
in the case d = 1) but this is not the case. Rather (3.3)
gives us R, = 1. The reason for this is that the relat-
edness in this case is being calculated with respect to
the entire population. Mathematically, we see from
(3.1) that G*is not defined in case k = 1 (unless d =
1) and therefore our calculations are simply not valid
in this case. Rather the value given by (3.3) for this
case represents a limit as k approaches 1, and if k<1,
no matter how small the difference, the deme is
“aware” of the rest of the population.

To check the equivalence of (3.3) and the co-
variance formula (2.6) we have calculated the dis-

R

A
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TABLE 2

Deme structure

1 2 3 4 5 6 7 8
q morph frequency frequency var(x) var(x) Eq Rq
(simulated) (eigenvector) =q(1—q) var(X) (3.6)
0 (0,0,0) 0.501240 0.499231 0 0 0
1/6 (1,0,0) 0.000415 0.000407 5/36 1/18 1/18 0.4
(2,0,0) 0.000092 0.000091 2/9
2/6 2/9 0.1166 0.5246
(1,1,0) 0.000160 0.000158 1/18
(2,1,0) 0.000172 0.000171 1/6
3/6 1/4 0.1264 0.5056
(1,1,1) 0.000055 0.000054 0
(2,2,0) 0.000092 0.000091 2/9
4/6 2/9 0.1166 0.5246
(2,1,1) 0.000157 0.000158 1/18
5/6 (2,2,1) 0.000410 0.000407 5/36 1/18 1/18 0.4
6/6 (2,2,2) 0.497208 0.499232 0 0 0

The dependence of relatedness Rq on allele frequency ¢ in a population of total size N=6 structured into d = 3 demes of size n =2
with & = p = 0.5 and mutation rate w = 10~*. There are a total of 10 different morphs each described by a triple which records the
number of mutant alleles in each of the three demes (col. 2) and these represent 7 different possible frequencies g (col. 1). For the
Monte Carlo simulations we take an arbitrary starting configuration, and then construct successive generations, creating the
next-generation breeders one at a time according to the appropriate probabilistic rules of migration and mutation. After each genera-
tion is formed we identify the population morph and update the frequency distribution. After 10° generations these seem to be sta-
tionary, and the resulting distribution is tabulated in column 3. In column 4 we have tabulated the “theoretical” frequencies obtained
from the morph frequency recursions. These recursions are linear and col. 4 is actually the dominant right eigenvector of the re-
cursion matrix. We provide both frequency columns in order to show the close fit between the simulation and the matrix results. The
variances in columns 5 and 6 can all be calculated from the allele configuration in column 2, but to get E var(x) in col. 7 for three in-

. . . . q " .
termediate values of ¢ we need the relative frequencies of the two morphs and we have used the eigenvector in col. 4. Column 8 is the
quotient of columns 7 and 5. The averages of columns 5 and 6 over the morph distribution col. 4 are 0.002799 and 0.001317 respec-
tively and these have quotient R, = 0.4704 (see 2.6). This agrees closely with the theoretical formula (3.3) R, = 8/17 = 0.4706.

tribution of the different possible realizations by two
methods — for N = 6 from the dominant eigenvector

cov(x,y)=Ecov,(x,y)+cov(x,y) (3.4)

of the linear recursion equations and for N = 6 and
N =20 by Monte Carlo simulation. The method and
parameters are provided in Table 2. For a population
of size N= 6 with d = 3 demes, (3.3) predicts R, =
8/17 = 0.4706 and using (2.6) we get R, = 0.4704
from both the eigenvector and from the simulations.
For a population of size N = 20 with d = 5 demes
(3.3) predicts R, = 16/61 = 0.2623 and our simula-
tions give us R, = 0.2629. These agreements are ex-
cellent.

3.2. The dependence of relatedness
on allele frequency

In a deme-structured population, a standard cova-
riance decomposition theorem allows the cova-
riance to be written as the sum of the average
within-deme covariance plus the covariance of the
deme averages:

where the bar denotes deme average. If x and y are
chosen at random in the deme with replacement,
then they are independent within the deme and
cov(x,y) = 0. Since, in this case, we also have y =x:

cov(x,y)=cov(x,x) =var(x) 3.5)

and the relatedness (2.5) between x and y conditional
on ¢ can be written,

_E, var(x) _E_ var(x)
"B, var(x) q(l-q)

(3.6)

To calculate the numerator of (3.6) we need the
re- lative frequency of the various morphs which
have allele frequency g and we can obtain these
from the numerical calculations described above.
The method and the results for NV = 6 are presented in
Table 2. The case N = 20 is more instructive and the
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results (Figure 1) show very little dependence of re-
latedness on allele frequency.

A deme structure which is different from but re-
lated to the above model is the case in which the
demes play no role in reproduction (like the case
k = 0) but are formed for the purpose of the fitness
interaction by selecting z individuals at random with
replacement. [This “replacement” requirement is
technical but it will have little effect if the deme size
is much smaller than the population size.] In this
case x is an average of n independent copies of x.
Hence var(x) = var(x)/n and R = 1/n. The special
case in which the demes are of size 2 is the case of
random mating with the possibility of self-fertiliza-
tion and the within-deme relatedness is essentially
the average relatedness between sibs among the off-
spring of the pairing. The interesting result is that in
these cases R is independent of ¢. Putting this result
together with Figure 1, we conjecture is that it is typ-
ical of deme-structured populations for relatedness
to depend only weakly on allele frequency.

0.8

0.7

0.61 stepping-stone
0.5
0.4-

o

¥ 0.3
0.2-
0.1

0.6 0.8 (

q

FIG. 1. Graph of frequency-specific relatedness R = against fre-

quency g after 10? iterations with k= 0.5, w = 1047 andp =0.5

for both the deme-structured population (N = 20, d = 5) and the

stepping-stone population (N = 20, k£ = 0.5). With the deme

structure we obtain a very weak dependence of R on ¢, whereas
the stepping-stone graph shows a strong dependence

4. Stepping-stone structure

We suppose there are N sites equally spaced around
a circle of circumference 1, each occupied by a sin-
gle breeder. At each site, the next generation occu-
pant is native with probability & and comes from
each adjacent site with probability (1 — k)/2. We are
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interested in the relatedness between breeders on ad-
jacent sites. The general method here, for both finite
and infinite populations has emerged from many
years of work by Malécot (reviewed in 1975) and is
also discussed in Kimura and Weiss (1964).

4.1. Calculation of average relatedness

The one-generation recursions for the CC between
individuals j sites apart, for 1 <j < N/2, involve the
coefficients for j — 1 and j + 1 (with an obvious ad-
justment for the diametrically opposite sites at
j=[N/2]) and hence we cannot solve for any of these
without solving for them all. For general N this in-
volves a system of [V/2] equations in the same num-
ber of unknowns. We cannot find a simple general
equilibrium solution for these, but we can solve
them with computer algebra for small values of N.
As an example the calculations for N = 5 are pre-
sented in Appendix 2. Here we fasten attention on
the average relatedness R, between breeders on ad-
jacent sites. The results are, ignoring terms in the
mutation rate w ,

1-k _ 05

N=5 R, =- =2 =01 4.1

A 246k S 1)

N=20 R, 184083057 _ ) 6179, 4.2)
293182135

Here the numerical values are calculated for £=0.5.
For N =20, R, is a quotient of polynomials in & of
degree 9, and in general R, appears to be the quo-
tient of polynomials in £ of degree just less than N/2.
For N=35, R, is negative. This is not surprising —in a
population in which the average relatedness to a ran-
dom individual (with replacement) is 0, the related-
ness to certain individuals other than self must be
negative.

To check the equivalence of covariance formula
(2.6) and (4.1, 4.2) we have calculated the distribu-
tion of the different possible realizations by two
methods — for N=35, from the dominant eigenvector
of the linear recursion equations and for N = 5 and
N =20, by Monte Carlo simulation. The method and
parameters are provided in Table 3. For N=15, (2.6)
gives R, =—0.10004 from the eigenvector distribu-
tion and R, = —0.09905 from the simulations and
these are close to (4.1). For N = 20, our simulations
give us R, = 0.6269 and this is close to (4.2).
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TABLE 3
Stepping-stone structure
1 2 3 4 5 6 7
q configuration frequency frequency cov(x, x) cov(x, y) Eq cov(x, y) Rq
(simulated) (eigenvector)
0 (0,0,0,0,0) 0.499288 0.499294 0 0 0
0.2 (1,0,0,0,0) 0.000399 0.000397 0.16 -0.04 -0.04 -0.25
04 (1,1,0,0,0) 0.000261 0.000258 0.24 0.04 0.006838 0.02849
(1,0,1,0,0) 0.000052 0.000051 -0.16
1,1,1 .000261 .0002 .04
0.6 (1LL,1,0.0) 0.00026 0.000258 0.24 0.0 0.006838 0.02849
(1,1,0,1,0) 0.000052 0.000051 -0.16
0.8 (1,1,1,1,0) 0.000399 0.000397 0.16 —-0.04 -0.04 -0.25
1 (1,1,1,1,1) 0.499288 0.499294 0 0 0

Relatedness calculation for the stepping-stone population of size N = 5 with k = p = 0.5 and mutation rate w = 10~4. The individuals
are arranged in a circle and the configuration records the relative placing of the mutant alleles. Column 3 gives the results of the
Monte Carlo simulations after 10° generations. In column 4 we have tabulated the dominant right eigenvector of the recursion ma-
trix, similar to Table 2. In column 6, y is taken to be adjacent to x. Column 8 is the quotient of columns 7 and 5. The covariances in
columns 5 and 6 can all be calculated from the allele configuration in column 2, but to get col. 7 for two intermediate values of ¢ we
need the relative frequencies of the two morphs and for this we have used the eigenvector in col. 4. Column 8 is the quotient of col-

umns 7 and 5. The averages of columns 5 and 6 over the morph distribution col. 4 are 2.7552x10~* and —2.7562 x107>, respectively,
and these have quotient R, =-0.10004 from (2.6). This agrees closely with the theoretical value R, =-0.1 from (4.1).

4.2. The dependence of relatedness
on allele frequency

The structure of the calculation for R is displayed in
Table 3 for the case N = 5, and Figure 1 provides a
plot of relatedness R, against frequency ¢ for the
case N = 20. Unlike the deme-structured case, we
find here a fairly strong dependence of relatedness
on allele frequency, with R being significantly
higher for intermediate values of ¢. In fact R nearly
doubles as the frequency goes from 0.1 to 0.5. This
suggests, for example, that an altruistic trait might
have trouble getting started, but if it drifted to a suf-
ficiently high frequency it might then increase fur-
ther under selection, but would have trouble attain-
ing fixation. This, of course, would encourage the
formation of relatively stable polymorphisms. Simi-
lar results have been obtained by Rousset and Bil-
liard (manuscript) in a simulation study of a one-di-
mensional stepping-stone population with 200 sites.

5. Altruism in a deme-structured population
Consider a population at the neutral equilibrium and

endow the allele A with a small selective effect
(> 0). Then by (2.8) the average frequency Ea(q)

will change in the direction given by W}. As soon as
this change gets underway, (2.8) is no longer valid,
but (2.2) (with C replaced by A) should remain ap-
proximately true and by setting E, (Ag) = 0 it gives
us an approximation to the new equilibrium average
frequency:

E,(q)=p +55Ecov(x,x)WI. (5.1)
w

An analogous equation is found in Rousset and Bil-
liard (manuscript, eq. 9). This tells us that the aver-
age inclusive fitness W should be able to predict
which side of p the new equilibrium will be on.
Here we employ a model of altruism in a haploid
deme-structured population to give us a numerical
check on this qualitative result. We assume that in
each generation each A individual performs an altru-
istic act with fecundity cost ¢ to the actor and benefit
b distributed uniformly over the deme, both b and ¢
assumed small. An inclusive fitness model for this
is found in Taylor (1992a) for an infinite population
and more generally in Rousset and Billiard (manu-
script) and Taylor and Day (manuscript). An altruis-
tic act creates b extra offspring with relatedness R to
the actor and —c extra offspring with relatedness 1,
and these b — ¢ extra offspring remain on the natal
patch with probability £ and in that case displace
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b — ¢ deme offspring who are native with probability
k and in that case have relatedness R. The net inclu-
sive fitness offspring count is then

W,=bR—-c—k’>(b-c)R

and the condition that this be positive can be written:

bR~ > c. (5.2)
where
72
R ~ = m (5.3)
1 -k*R

is what might be called the “effective” relatedness
and we see that it is somewhat less than R. This is an
effect of what Hamilton (1964) called the “viscous”
structure of the population. When population dis-
persal is only partial, the benefits of altruism can
compete with and displace normal reproductive out-
put and these same factors moderate the costs (Ham-
ilton, 1964, p. 11; Wilson et al., 1992; Taylor,
1992a, b; Kelly, 1997), and the &? terms in (5.3) pro-
vide the necessary discounting of these benefits and
costs. We see from (5.2) that the effective related-
ness R~ is the threshold cost:benefit ratio ¢/b, in the
sense that the altruistic trait is neutral if this ratio is
equal to R~, and is at an advantage or disadvantage if
the ratio is less than or greater than R~. Note that we
can eliminate this “viscosity” by setting £ =0 (com-
plete migration), and in this case R~ = R and (5.2)
becomes Hamilton’s (1964) classic condition
bR>c.

If we replace R by the average within-deme relat-
edness R, given by (3.3), then the effective related-
ness (5.3) simplifies to:

d-1

N -1
and is independent of the migration parameter .
This provides a finite population version of a general
result that in a viscous inelastic infinite population
the kin-selected effects of a fitness interaction are
exactly counterbalanced by the competitive effects,
and the natural selection acts on the trait exactly as it
would in a panmictic population with random inter-
actions — the case k=0 (Wilson et al., 1992; Taylor,
1992a, b).

To model the behaviour we ran the Monte Carlo
simulations described in Section 3, each generation
assigning appropriate cost and benefit to each

R ~=

(5.4)

TABLE 4

Equilibrium allele frequency E, (¢) in a finite deme-structured
population with an altruistic trait

Population ~ # Demes R~ c E, (@)
size N d (from 5.3) b

0.35 0.5117

6 3 0.40 0.40 0.5000

0.45 0.4881

0.16 0.5445

20 5 0.21 0.21 0.4985
0.26 0.4535

We take p = 0.5 so that a neutral allele should have equilibrium
frequency 0.5. Other parameter values are k= 0.5, mutation rate
w = 10~ and fixed benefit » = 0.1. Each population was run for
10° generations with different values of the cost ¢ giving a ¢/b
ratio which was below, equal to, and above the “effective” aver-
age within-deme relatedness R~. In each case the frequency re-
sponded as predicted by condition (5.1). This provides evidence
that the average within-deme relatedness R, correctly predicts
allele frequency change averaged across all realizations.

breeder according to its genotype and the average
genotype in the deme, until the morph distribution
became stationary. We used a fixed benefit » = 0.1
and variable cost c. When bR~ = ¢, we should have
Wi=0and (5.1) tells us that the equilibrium distribu-
tion should have an average allele frequency of
E,(g)=p (seealso 2.7), but when bR~>c or bR~<c,
the equilibrium distribution should have an average
allele frequency of Ea(g) > p or Ea(g) < p, respec-
tively. Table 4 shows that this is indeed the case for
two populations of size 6 and 20.

6. Discussion

It needs to be emphasized that it is not at first clear
exactly how relatedness should be defined in a finite
population. This question was perhaps first raised
by Seger (1981) and recently was analyzed by Rous-
set and Billiard (manuscript) and the methodology
they set forward, which is to attempt to model the al-
lele frequency change averaged over all realizations
of the finite population, turns out to be very fruitful,
in that the corresponding “average” relatedness co-
efficient can be formulated in terms of the average
probability of identity in state (Rousset and Billiard,
manuscript) or identity by descent (2.9).

Here we have looked at two common theoretical
structures, in each case calculating the coefficients
of consanguinity G from standard recursions, and
then obtaining the average relatedness R, from
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(2.9). We have then used numerical simulations to
run two different kinds of check. The first of these in
sections 3 and 4 compares (2.9) to the covariance
definition of R, given in (2.6), and the results are
presented in Tables 2 and 3. The second of these, in
section 5, checks whether or not (5.1) actually pre-
dicts the direction of average allele frequency
change under weak selection. For this we have
looked at an altruistic trait in a deme-structured pop-
ulation and the results of Table 4 show that the equi-
librium frequency of the allele is shifted in the ex-
pected direction from the neutral equilibrium p.

For both of these checks we need to know the
equilibrium frequency with which the different pos-
sible morphs (realizations) occur and we have used
two different methods to calculate these. The first
uses a Monte Carlo simulation, running the popula-
tion for a large number (10°) of generations and sim-
ply recording the proportion of occurrences of each
morph, and the second obtains these as the dominant
eigenvalue of the linear recursion equations for the
morph frequencies. These are reported in columns 3
and 4 of Tables 2 and 3.

An important difference between a deme struc-
ture and a stepping-stone structure is that the second
is “spatial” whereas the first is not. In many ways
this makes the stepping-stone model more realistic;
however, because the genetic similarity between
any pair of sites depends on the previous similarity
between every pair of sites, calculations of related-
ness are difficult or intractable. In the deme structure
on the other hand, there is no local structure among
demes, and the recursion equations for relatedness
are typically easy to solve (Appendix 1). For small
populations, perhaps with a computer algebra pack-
age, we can handle the stepping-stone recursions an-
alytically and Appendix 2 presents the method for
N = 5. Stepping-stone populations in 2 or 3 dimen-
sions are harder still to analyze.

Our simulations have suggested a difference be-
tween these two population structures in the depend-
ence of relatedness on allele frequency g. With the
deme structure this is very weak, and R_ is almost
constant, whereas the stepping stone structure
shows a strong dependence with higher relatedness
to a neighbour for intermediate frequencies (Fig. 1).
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APPENDIX 1

Coefficients of consanguinity in a deme-structured
population

Define the following coefficients of consanguinity:

G= two individuals on the same deme (with re-
placement)
G# = two individuals from different demes.
Then
GD=;G+d_1G# (A.1)

and we have the recursions:

n

G=L+""Lieg +(1 -k*)G )1 -w)? (A.2)
n n

G#=[k°G#+(1 - k)G "] -w)>  (A3)

which solve to give (3.1) and (3.2).

APPENDIX 2

Average relatedness in a stepping-stone population
of size N =15

Recall that £ is the probability that an occupant is na-
tive. The equations are more transparent if we let
2m = (1 —k) be the probability that an occupant is an
immigrant. In that case it came from either adjacent
site with probability m. We let G, be the CC to a
neighbour (at distance s =+1/5) and let G, be the CC
to either of the two “opposite” individuals (at dis-
tance s = £2/5). Then the CC between random indi-
viduals with replacement is

_1+2G, +2G,
: .

GD
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The one-generation recursions are:

G, =[(K’G,)+(2m’G,) +(m’G, +m’G,) +
+(2km +2kmG ][l —w]?,

G, =[(k’G,)+(2m’G,)+(m’G, +m’) +
+(2kmG, +2kmG,)][1 —w]’,

In each equation, the four terms in the round brack-
ets catalogue the different movement types of the
two offspring. In the first term, they both stay at
home, in the second they both move one unit in the
same direction, in the third they move in opposite di-
rections, and in the fourth one stays at home and the
other moves. The final term provides the probability
that neither offspring has mutated.

The equilibrium values of the G; are obtained by
setting G, =G, and solving. If w=0, the solutions are
clearly G; = 1, so that the solutions have the form

G, =1 -gw+o(w)

If we put this into above equations and set g’ =g we
obtain the equations:

g (1=K =3m>) +g, (-m* - 2km) =2,
g, (=m* =2km)+g,(1 =k’ =2m* —2km) =2

and the solution is:

g = 8-10m
Y om4-10m +5m>)
12-20m

&,

Cm4—10m +5m*)
If we write G* = 1 — g*w, then

gD:2gl+2g2 _ 8 —12m
5 m(4 —10m +5m*)

and the relatedness between individuals at adjacent
sites is
G, -G" =gD 8 _ Tm

4—-6m

RA: ul [ul
1-G g

and this is (4.1).
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