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Summary

1. There are tens of thousands of species of phytoplankton found throughout the tree of life.

Despite this diversity, phytoplankton are often aggregated into a few functional groups accord-

ing to metabolic traits or biogeochemical role. We investigate the extent to which phytoplank-

ton species dynamics are neutral within functional groups.

2. Seasonal dynamics in many regions of the ocean are known to affect phytoplankton at the

functional group level leading to largely predictable patterns of seasonal succession. It is much

more difficult to make general statements about the dynamics of individual species.

3. We use a 7-year time series at station L4 in the Western English Channel with 57 diatom

and 17 dinoflagellate species enumerated weekly to test whether the abundance of diatom and

dinoflagellate species varies randomly within their functional group envelope or whether each

species is driven uniquely by external factors.

4. We show that the total biomass of the diatom and dinoflagellate functional groups is well

predicted by irradiance and temperature and quantify trait values governing the growth rate of

both functional groups. The biomass dynamics of the functional groups are not neutral and

each has their own distinct responses to environmental forcing. Compared to dinoflagellates,

diatoms have faster growth rates and grow faster under lower irradiance, cooler temperatures,

and higher nutrient conditions.

5. The biomass of most species varies randomly within their functional group biomass envel-

ope, most of the time. As a consequence, modellers will find it difficult to predict the biomass

of most individual species. Our analysis supports the approach of using a single set of traits

for a functional group and suggests that it should be possible to determine these traits from

natural communities.

Key-words: demographic stochasticity, diatoms, dinoflagellates, English Channel, functional

types, neutral model, time series, traits

Introduction

Functional groups are collections of species that share

morphological, physiological and biochemical traits or

other defining characteristics (Iglesias-Rodr�ıguez et al.

2002; Pena 2003; Le Qu�er�e et al. 2005). Species within a

functional group perform similar ecosystem services (e.g.

fixing nitrogen) or require similar inorganic and organic

resources. Grouping similar species into functional groups

simplifies analyses and aids in conceptual and quantitative

model building. Phytoplankton communities are enor-

mously diverse, and the functional group concept allows

the aggregation of thousands of species into only a handful

of functional groups. Typically, these groups are defined

based on a combination of higher phylogenetic grouping

and biogeochemical function (e.g. silicifying diatoms, mix-

otrophic dinoflagellates, nitrogen fixing and non-nitrogen

fixing cyanobacteria, and calcifying coccolithophorids) or

cell size (Hood et al. 2006; Irwin et al. 2006; Finkel et al.

2010). The physiological traits of these functional groups

used in models are usually based on a few model organ-

isms studied in the laboratory (Moore et al. 2002; Litch-

man & Klausmeier 2008; Barton et al. 2013b).

The success of the functional group concept suggests

that the species within functional groups may behave simi-

larly enough to be described by a single set of functional

traits. A functional trait is defined as a feature of an*Correspondence author. E-mail: airwin@mta.ca
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organism that can be measured and that influences one or

more essential functional processes such as reproduction

and growth (Weithoff 2003). Functional traits determine

an organism’s effects on ecosystem processes and its

response to environmental forcing and reflect adaptations

to the abiotic and biotic environments as well as trade-offs

among different functions within an organism. It is not

known how to identify functional traits for an entire func-

tional group, whether a small number of species can pro-

vide trait values representative of the group, or how to

identify potentially representative species.

If species within a functional group are very similar, the

abundance or biomass dynamics of each species within a

functional group may be neutral relative to the overall

dynamics of the group. The idea of ecological neutrality or

functional equivalence is that the abundance or biomass of

each species at one sampling time, relative to the total

community abundance or biomass at that time, is only

determined by the species’ relative abundance or biomass

at the previous sampling time. The species’ taxonomic

identity and environmental conditions provide no informa-

tion on the relative contribution of individual species to

total abundance or biomass (Volkov et al. 2003; Hubbell

2005, 2006; Shipley, Vile & Garnier 2006). In a neutral

community, all species are identical on a per capita basis

in their demographic properties (birth rate, death rate and

immigration rate) and have equal competitive abilities.

Consequently, the demographic events underpinning fluc-

tuations in relative species abundance (birth, death and

migration) are drawn randomly from any one species in

proportion to its abundance, causing relative species’

abundances to ‘drift’ upward or downward as a random

walk called ecological drift (Hubbell 2001). In other words,

a neutral community is one where changes in relative spe-

cies abundances are essentially due to demographic

stochasticity (or demographic noise) irrespective of species’

identities or ecological drift. Species neutrality within a

functional group is a restricted sense of this idea: the pro-

portion of a species’ biomass relative to its functional

group’s biomass is a random walk not influenced by taxo-

nomic identity or environmental conditions.

Time-series data of phytoplankton biomass and environ-

mental conditions permit a test of the functional group

concept in natural phytoplankton communities. Using

time-series data, we test whether species’ biomass dynamics

are neutral within functional groups. To carry out this

analysis, we first develop a Bayesian model of functional

group biomass dynamics and extract values of functional

traits for two ecologically dominant and diverse phyto-

plankton functional groups. We assess whether these func-

tional traits can adequately predict changes in the biomass

of each functional group with changing environmental

conditions. We then test for neutrality of species within

each functional group by quantifying the extent to which

the biomass dynamics of each species within a functional

group is consistent with ecological drift. If many species

within a functional group are highly non-neutral, then a

single set of traits for that functional group is likely inade-

quate to describe its biomass dynamics and it may be nec-

essary to subdivide the functional group.

Materials and methods

T IME-SER IES DATA

We analysed select time-series data from Station L4 (50° 15�000N,

4° 13�020W) that forms part of the Western Channel Observatory

(WCO) in the Western English Channel (www.westernchannelob-

servatory.org.uk). Station L4 is in a coastal, temperate environ-

ment with strong seasonal cycles and has one of the longest

phytoplankton time series. We used weekly observations of the

abundance (cells L�1) of 57 diatom and 17 dinoflagellate species,

genera or morphological classes (Table S1, Supporting informa-

tion, Southward et al. 2015; Harris 2010; Widdicombe et al.

2010). This relative high sampling frequency is essential for our

time-series modelling. We focused on diatoms and dinoflagellates

because they are ecologically important, diverse groups with high-

quality and high-resolution taxonomic data. We chose not to anal-

yse the phytoflagellates because they were not identified to the spe-

cies level and their identification was primarily made based on

size. Similarly, coccolithophorids were not analysed because they

were dominated by a single species, Emiliania huxleyi (Widdi-

combe et al. 2010). We omitted some infrequently observed dia-

tom and dinoflagellate species to ensure that all species had at

least 20 observations and were observed in more than 10% of the

sampling weeks. For simplicity, we refer to each taxonomic unit

identified during sampling as a species. Samples were taken at

10 m depth. Species were identified using light microscopy at

2009 or 4009 and counted from a 200-mL sample following

Uterm€ohl (1958). Full methods are described for phytoplankton

counting in Widdicombe et al. (2010) and for temperature and

nutrients in Smyth et al. (2010). Microscopy was used to obtain

an estimate of cell volume for each species (Kovala & Larrance

1966). The total biomass (g C m�3) of diatoms and dinoflagellates

is computed as the product of abundance (cells m�3) and a fixed

carbon quota for each species (g C cell�1) derived from cell vol-

ume and an allometric relationship (Menden-Deuer & Lessard

2000). Carbon quota varies over a cell’s life cycle and with envi-

ronmental conditions, but this variation is expected to be much

smaller than the variation in abundance, so even though we lack

time-resolved variation in carbon quota, we expect that the major-

ity of the variation in phytoplankton biomass is captured by these

data. Environmental data consist of in situ surface water tempera-

ture (°C), surface nitrate concentration (lmol L�1) and irradiance

measured continuously at the nearby field station (mol m�2

day�1). The time series extends over many years with phytoplank-

ton counts beginning in 1992 at station L4. To maximize the per-

iod of weekly data and minimize the large gaps in the time series

for these observations (phytoplankton counts and environmental

data), we restrict our attention to 349 consecutive weeks spanning

14 April 2003 to 21 December 2009. Linear interpolation was used

to establish a regular 7-day grid for all data, commonly to adjust

observations that are 5–9 days apart and infrequently to fill in

missing data from an unsampled week. Interpolating missing val-

ues means we will miss some natural variability in the data, but

we expect this will have little impact on the results since only

about 10% or less of observations were missing.

MODEL OVERV IEW

We developed models of the biomass for each functional group as

a function of environmental conditions and of the biomass of indi-

vidual species within their functional group (diatom or dinoflagel-
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late) biomass envelope assuming species are neutral within their

functional groups. We included an extra layer between these mod-

els, which are based on true biomasses, and the observed bio-

masses to allow for measurement error and fill gaps in the time

series of the biomass of individual species. Since the biomass of

each functional group is empirically log-normally distributed

(Fig. S1, Supporting information), we modelled the log biomass

for each group. The true log biomass for each week in the time

series was modelled as the true log biomass in the previous week,

plus the intrinsic growth rate, linear effects due to temperature,

irradiance, and nitrate concentration, and losses due to density-

dependent grazing. At a species level, ecological drift is modelled

by assuming that the proportion of the functional group biomass

attributed to each species is on average the same proportion real-

ized in the previous week. Demographic stochasticity is present in

both models; in the neutral species model, it is a crucial part of

the dynamics while in the functional group model, demographic

stochasticity is frequently insignificant compared to the forcing

provided by environmental conditions. A list of symbols used in

the models is provided in Table 1.

FUNCT IONAL GROUP B IOMASS MODEL

We account for sampling error by modelling the observed log bio-

mass of each functional group yt (time t, 1 ≤ t ≤ T) conditionally

on the true log biomass gt. We assumed that yt is a realization of

a normal distribution with mean gt through the sampling or obser-

vation model

ytjgt;r2
1 �Nðgt;r2

1Þ; eqn 1

where r2
1 is an unknown functional group level sampling vari-

ance to be estimated from the data. The normality assumption

on the functional group log biomasses is theoretically justified

by the central limit theorem given that we are dealing with spe-

cies-rich assemblages with many rare species and only a few

abundant ones. We validated the log-normality assumption on

the functional group biomasses both graphically (Fig. S1, Sup-

porting information) and statistically through the 2-sample Kol-

mogorov–Smirnov goodness-of-fit test (Table S2, Supporting

information).

Let Et = {Tempt, PARt, NO3t} denote the set of environmental

conditions at time t where Tempt, PARt and NO3t indicate, respec-

tively, the temperature, irradiance and nitrate concentration at

time t, standardized to have mean zero and variance one. We

modelled the actual log biomass, gt, of each functional group at

times t = 2, 3, . . . T conditionally on its biomass at the previous

sampling time t-1 and environmental conditions Et using a normal

distribution with time-dependent mean lt as

gtjgt�1;Et �Nðlt;r2
gÞ; eqn 2

where lt = gt-1 + r + dgt-1 + b1Tempt + b2PARt + b3NO3t, r > 0 is

the intrinsic growth rate (week�1), b1, b2 and b3 are, respectively,

dimensionless estimates of the temperature, irradiance and nitrate

concentration effects on the functional group log biomass, d is the

density dependence parameter and r2
g is the functional group level

process variance. We use a linear model for lt rather than more

complex nonlinear functions of temperature, irradiance and

nitrate concentrations, since the amount of variation in the envi-

ronmental data is relatively small and the resulting linear model

explained the vast majority of variation in functional group log

biomass. From Eq. (2) and the properties of the log-normal distri-

bution, it follows that conditionally on gt�1, Tempt, PARt, NO3t
and d, the functional group biomass at time t, Gt, is log-normally

distributed with mean expðlt þ 1
2r

2
gÞ and variance

exp ðr2
gÞ � 1

h i
exp ð2lþ r2

gÞ.

NEUTRAL MODEL FOR THE B IOMASS OF EACH SPEC IES

WITH IN EACH FUNCT IONAL GROUP

In parallel with the observation model for functional group bio-

mass, we model the observed log biomass of species i, xi,t (times

t = 1,2, . . . , T) given its true log biomass, si,t, as a realization of a

normal distribution centred at si,t through the observation model

xi;tjsi;t �Nðsi;t;r2
2Þ; eqn 3

where r2
2 is the species-level sampling variance to be evaluated

from the data. A key advantage of the Bayesian approach is the

ease with which we accommodate missing values since Bayesian

inference makes no distinction between missing data and parame-

ters. In a Bayesian framework, all unobserved quantities are

assigned priors and estimated from the data. In OpenBUGS, one

simply needs to extend the model specification with priors on the

missing observations which are then automatically imputed with

samples from their posterior predictive distributions (Thomas

et al. 2006; Gelman et al. 2013).

Under the neutrality assumption of the biomass of species i

drifting randomly within its functional group biomass envelope,

the expected biomass Mi,t of species i at time t, conditional on the

biomass of the functional group, Gt, is

Mi;t ¼ ci;t�1Gt eqn 4

where ci,t = Si,t/Gt is the proportion of the functional group bio-

mass at time t (t = 1, . . ., T) due to species i, Si,t = exp(si,t) is the

true biomass of species i at time t and Gt is the true functional

group biomass at time t, with gt = log(Gt). Under this model, the

true biomass of species i is solely determined by demographic

stochasticity (random drift). Hence, conditionally on Gt and ci,t-1,
we assume the underlying log biomass of the ith species at time t

Table 1. List of symbols

Symbol Interpretation

t Time (weeks)

i Species index

yt, gt Observed, true log biomass of a functional

group

Yt, Gt Observed, true biomass of a functional

group

xi,t, si,t, mi,t Observed, true, expected log biomass of

species i in week t

Xi,t, Si,t, Mi,t Observed, true, expected biomass of species

i in week t

r1
2, rg

2 Functional group level sampling, process

variance

r2
2, ri,t

2, vi,t
2 Species-level sampling, process, demographic

variance

Tempt, PARt, NO3t Temperature, irradiance and nitrate

concentration in week t

lt Modelled mean log biomass

r Intrinsic growth rate (week�1)

d Density-dependent loss coefficient

b1, b2, b3 Effect of temperature, irradiance, nitrate

concentration on growth rate

pi,t, ci,t Observed, expected proportion of

functional group biomass due to species i

Ωi Set of weeks that species i was observed

/i Neutrality index for species i
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is drawn from a normal distribution with mean mi,t = log(Mi,t)

and variance r2
i;t ¼ v2i;t=Si;t�1,

si;tjgt; ci;t�1 �Nðmi;t;r
2
i;tÞIðsi;t\gtÞ eqn 5

Note that the variance r2
i;t of the focal species’ log biomass at time

t is defined as the species’ demographic variance, v2i;t, scaled inver-

sely with the species’ biomass at the previous sampling time used

as a proxy for population size, resulting in a higher variability of

low biomasses and vice versa.

SPEC IF ICAT ION OF PR IORS

We complete the model specification with explicit statements of

fairly uninformative priors on the model parameters and the initial

functional group and species biomasses. We placed on the func-

tional group level intrinsic growth rate, r, a normal distribution

centred at zero with variance 10, truncated at zero to exclude nega-

tive values, that is r�Nð0; 10ÞIðr[ 0Þ, where the function Ið:Þ
denotes the indicator function which takes the value 1 when its

argument is true and the value zero otherwise. We assigned centred

normal priors with variance 100 on b1, b2 and b3 independently,

and a standard normal prior on the density dependence parameter

d. We imposed Inverse–Gamma(1,1) priors independently on each

of the variance parameters r2
g, r

2
1 and, r2

2 and an Inverse–Gamma

(xi,1, xi,2) on r2
i;t, where xi,1 and xi,2 are species-specific demo-

graphic parameters. We assigned Beta(a1, a2) priors on ci,t indepen-
dently for t = 1,2,. . ..T, and independent Exp(1) distributions on

the hyper-parameters a1, a2, xi,1 and xi,2. Finally, we assumed for

initial functional group and species log biomasses g1 and si,1 non-

informative normal priors centred at zero with variance 1000, that

is g1 � N(0, 1000) and si,1 ~ N(0, 1000) I(s1 < g1). The correspond-

ing sampling models are y1 �Nðg1;r2
1Þ and xi,1 ~ N(si,1, r2

2) I (xi,1 <
y1) from which ci,1 = exp(si,1-g1) and pi,1 = exp(xi,1-y1) follow.

We use Markov chain Monte Carlo (MCMC) (Gilks, Richardson

& Spiegelhalter 1996) to simulate, through OpenBUGS (Thomas

et al. 2006), the joint posterior distribution of the model parameters.

The OpenBUGS code is provided in the Supplementary Material.

We ran 20 000 iterations of three parallel Markov chains starting

from dispersed initial values, and discarded the first 5000 samples

from each Markov chain as burn-in, thinning the remainder to

monitor each 25th sample. We assessed the convergence of the

MCMC through visual inspection of traceplots and autocorrelation

functions (Figs S2 and S3, Supporting information). The chains

reached the target distribution after roughly 1500 iterations. All

chains mixed well by jumping freely over the parameter space.

NEUTRAL ITY INDEX

We evaluated the extent to which individual species biomasses

drift randomly within their respective functional groups’ biomass

envelopes by comparing, for each species i, the relative biomass

ci,t = Si,t/Gt predicted by the neutral model at time t (2 ≤ t ≤T)
with the observed counterpart pi,t = Xi,t/Yt. For a species with

neutral biomass dynamics, the predicted relative biomass should

be evenly spread around the distribution of the observed relative

biomass, so one should be bigger than the other roughly half the

time, which we express by testing whether Prðci;t [ pi;tÞ is close to

0�5. This probability can be straightforwardly evaluated within

OpenBUGS defining gi,t = step(ci,t – pi,t) where step(u) is 1 if

u > 0 and 0 otherwise. The posterior mean ĝi;t ¼ E½gi;tjdata� pro-
vides an estimate of the required probability Prðci;t [ pi;tÞ that

takes parameter uncertainty into account. We regard the biomass

dynamics of species i from time (t-1) to t as consistent with ran-

dom drift when 0:25\ĝi;t � 0:75. We define a neutrality index /i

as the proportion of ĝi;t between 0�25 and 0�75 counting only

times Ωi when species i was observed and not using imputed val-

ues of pi,t,

/i ¼
1

#Xi

X
t2Xi

Ið0:25\ĝi;t � 0:75Þ eqn 6

where #Ωi indicates the size of the set Ωi, and use this index to

assess the importance of random drift as a driver of individual spe-

cies’ biomass dynamics. We consider /i ≥ 0�75 and /i\0�25 as sup-
porting, respectively, the prevalence of random drift and that of

non-neutral forces in driving the biomass dynamics of species i,

where as 0�25 < /i ≤ 0�75 suggests an interplay of neutral and non-

neutral forces in shaping the focal species biomass patterns.

Results

DATA OVERVIEW

Thebiomassofdiatomsanddinoflagellatesat stationL4 inthe

Western English Channel shows a strong seasonal cycle, with

a great deal of variability superimposed on the annual cycles

(Fig. 1). The aggregated biomass (g Cm�3) of 57 diatom spe-

cies and 17 dinoflagellate species varied by a factor of ~1000
and ~10 000 on an annual basis, respectively. The richness of

the diatom and dinoflagellate communities is highly variable

fromweek toweekwith amedian richness of 16 and 4 species,

respectively. The times of rapid biomass accumulation and

maximum biomass density are slightly different between the

two functional groups, with diatoms blooming earlier in the

season.These strongseasonaldynamics indicate that it should

be possible to predict much of the variation in functional

groupbiomass fromenvironmental conditions.

There are very strong seasonal oscillations in sea surface

temperature (°C), irradiance (mol photons m�2 day�1) and

nitrate concentrations (lmol L�1) (Fig. 1). These three

variables strongly affect phytoplankton growth rates, but

they are not even approximately independent, so it may

not be appropriate to use all three variables in a statistical

model. A principal component analysis of these three vari-

ables showed that the first two principal components

account for 93% of the variation in the three variables.

The largest pairwise correlation was between nitrate con-

centration and irradiance (r = �0�74). The rapid variability

and uptake of nitrogen sources means that point estimates

of nitrate concentration may not always be a good mea-

sure of the nitrate resources available to phytoplankton.

After exploring models with all three predictors and omit-

ting either nitrate concentration or irradiance, we decided

to omit nitrate concentration (Eq. 2, set b3 = 0) from our

final model of functional group biomass. Omitting nitrate

concentration makes the interpretation of the coefficients

for temperature and irradiance more straightforward.

FUNCT IONAL GROUP B IOMASS

Our models of functional group biomass using

temperature and irradiance explained 96% and 98% of the

temporal variation in the diatom and dinoflagellate log bio-

© 2016 The Authors. Functional Ecology © 2016 British Ecological Society, Functional Ecology
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masses, respectively, with model predictions close to the

observed data (Fig. S4, Supporting information). The resid-

uals from the model of functional group log biomass, yt-gt,

are clustered around zero with no apparent trend and no

serial correlation (Fig. S5, Supporting information), show-

ing that our model assumptions about the functional group

biomass dynamics are sensible and that the seasonal cycles

in the functional group biomass data are largely explained

by fluctuations in temperature and irradiance.

We obtained a posterior mean for four functional

group trait parameters in each functional group model:

intrinsic growth rate (r, week�1), the effect of tempera-

ture on growth (b1, dimensionless), the effect of irradi-

ance on growth rate (b2, dimensionless) and a coefficient

measuring the effect of increased biomass density on

growth (d, dimensionless). The growth parameters in the

functional group model (Eq. 2) are well estimated with

narrow posterior distributions and differ between diatoms

and dinoflagellates (Fig. 2). Our neutrality model (see

below) yielded replicate estimates of each functional

group trait parameter (Fig. 2, symbols and 95% credible

intervals).

The intrinsic growth rate of diatoms is much higher than

the intrinsic growth rate for dinoflagellates (Fig. 2). The

net growth rate includes linear loss terms such as respira-

tion but is unaffected by quadratic loss terms such as den-

sity-dependent grazing or viral attack which is described

by the density-dependent parameter d. Both functional

groups exhibit an increase in their growth rates under ele-

vated temperatures and irradiance but the sensitivity to

changes in temperature and irradiance is much greater for

dinoflagellate biomass than for diatom biomass. Both

functional groups experience strong density-dependent lim-

itation on their growth rates as expected from the annual

cycle of biomass blooms (Fig. 1). The magnitude of this

effect is larger for diatoms, but only differs by about 25%

between functional groups which is a smaller relative

difference than between any of the other parameters.

TEST ING THE NEUTRAL ITY OF SPECIES WITH IN

FUNCT IONAL GROUPS

Our neutrality index / (Eq. 6) measures the proportion of

time the week-to-week change in the biomass of a species,
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Fig. 1. Key environmental conditions

affecting phytoplankton growth rate at Sta-

tion L4 and biomass of phytoplankton

functional groups. (a) temperature (°C), (b)
irradiance (mol m�2 day�1), (c) nitrate con-

centration (lmol L�1), (d) aggregated bio-

mass of enumerated diatom and (e)

dinoflagellate species at station L4 in the

Western English Channel, reported weekly

for 349 weeks starting on 1 April 2003

through 21 December 2009. Biomass

(log10 g C m�3) was computed by summing

over all species the product of abundance

(cells m�3) and cell carbon inferred from

an allometric size-scaling relationship

between cell carbon and cell volume, from

Menden-Deuer & Lessard (2000).
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relative to the total biomass of its functional group, is well

predicted by random drift or neutral model (Fig. 3). Five

dinoflagellate and three diatom species are clearly neutral

within their functional group biomass envelopes (species

with / ≥ 0�75 in Fig. 3). None of the species are clearly

driven by non-neutral processes (/ ≤ 0�25). The majority

of species in both functional groups have a neutrality

index between 0�4 and 0�7 indicating that most species

exhibit a mixture of neutral and non-neutral dynamics in-

line with the neutrality-niche continuum hypothesis

(Gravel et al. 2009; Mutshinda & O’Hara 2011). However,

the distribution of this index is skewed to the right for

both functional groups implying that most species fall on

the neutrality side of the continuum. The cell size and

median abundance of these neutral species do not stand

out from the rest of the community, but there is an overall

trend for species that are observed less frequently to have

a larger neutrality index.

Our model linking a species’ observed biomass to its

true biomass (Eq. 3) allowed us to impute observations of

a species when its abundance was below the detection

threshold of the sampling protocol, but these data were

not used in the computation of the neutrality index of a

species as they were not independent of the neutrality

hypothesis. Since most species were not observed in the

weeks their abundance was low, we do not have a good

estimate of the neutrality of species at those times. Thus, a

more nuanced interpretation of our result is that most spe-

cies are neutral within functional groups most of the time

Net growth rate r (week–1) 

0·1 0·2 0·3 0·4

Diatoms

Dinoflagellates

Temperature effect β1

0·2 0·3 0·4 0·5

Diatoms

Dinoflagellates

Irradiance effect β2

0·15 0·20 0·25 0·30 0·35

Diatoms

Dinoflagellates

Density dependence δ

–0·30 –0·26 –0·22

Diatoms

Dinoflagellates

Fig. 2. Parameters from the growth models for both functional

groups. For each parameter, the mean (filled circle) and 95% cred-

ible intervals (bars) of the parameter estimates are shown for each

of the 57 (diatoms) or 17 (dinoflagellates) models estimated for

each species.

0·0 0·2 0·4 0·6 0·8 1.0

Neutrality index φ

C. debilis
M. membranacea

Small pennate
Pleurosigma sp.

G. delicatula
N. closterium

L. danicus
P−n. delicatissima

C. socialis
T. rotula

P. alata 5 µm
P−n. seriata

O. mobiliensis
G. flaccida
C. danicus
D. pumila

R. setigera 25 µm
R. imbricata 15 µm

R. styliformis
P. stelligera
L. minimus

R. imbricata 10 µm
Thalassiosira 20 µm

S. costatum
G. striata
D. crabro
P. sulcata

P. truncata
C. densus

D. fragilissimus
T. punctigera
B. paxillifera

Thalassiosira 4 µm
R. setigera 5 µm

L. annulata
P−n. pungens

P. planctonicum
C. affinis

D. brightwellii
E. zodiacus

Thalassiosira 10 µm
Navicula sp.

Pennate 50 µm
C. pennatum

P. alata
Pennate 30 µm

N. sigmoidea
C. simplex

R. imbricata 5 µm
T. nitzschioides

N. distans
C. radiatus

R. tesselata
C. pelagica

C. decipiens
L. mediterraneus
P. panduriforme

K. mikimotoi
P. micans

D. acuminata
S. trochoidea

P. balticum
P. cordatum
C. lineatum

P. triestinum
G. pygmaeum

C. fusus
Micranthodinium sp.

M. perforatus
C. tripos

C. horridum
Scrippsiella sp.

G. spinifera
Gymnodinium sp.

Fig 3. Neutrality index for each species, grouped by functional

groups (dinoflagellates on top, diatoms at the bottom) and

ordered by the value of the neutrality index within groups. A

value larger than 0�75 is strong evidence for neutrality, values

below 0�25 (none reported) would be strong evidence against neu-

trality and the remainder of the results support a temporal mix-

ture of neutral and non-neutral dynamics. Vertical lines highlight

the cut-offs of 0�25 and 0�75 (dotted) and the division between

neutral and non-neutral at 0�5 (solid).
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during the times of the year they are most abundant. There

is no significant correlation between a species’ neutrality

index and its cell size, carbon quota or time-averaged log

biomass.

Discussion

The phytoplankton community at station L4 in the Western

English Channel is highly dynamic with a strong seasonal

oscillation in biomass and community structure (Southward

et al. 2015). Our analysis clearly establishes that the bio-

mass dynamics of diatoms and dinoflagellates are well char-

acterized by functional group level traits. These two

functional groups respond distinctly to changes in environ-

mental conditions over time due to differences in four eco-

physiological traits: intrinsic growth rate (r), temperature

(b1) and irradiance (b2) effects on growth rate and a den-

sity-dependent term (d) (Fig. 2). Diatoms have relatively

large intrinsic growth rates compared to the dinoflagellates,

which is consistent with many previous studies (Furnas

1991; Raven, Finkel & Irwin 2005; Irwin, Nelles & Finkel

2012). The intrinsic growth rates represent the net density-

independent growth rate of the total biomass of each

functional group at the average environmental conditions

(temperature and irradiance) and as a result are much smal-

ler than maximum growth rates of individual species in

culture conditions. Dinoflagellates were relatively more

responsive to warming compared with diatoms. This is con-

sistent with earlier results at this site (Widdicombe et al.

2010), across the North Atlantic (Irwin, Nelles & Finkel

2012) and at a tropical Caribbean site (Mutshinda, Finkel

& Irwin 2013a; Mutshinda et al. 2013b). This supports the

hypotheses of phytoplankton communities restructuring

and increasing dominance of dinoflagellates in a warming

world (Leterme et al. 2005; Finkel et al. 2010). Both func-

tional groups at station L4 are strongly affected by density-

dependent loss rates, which are likely a combination of

grazing pressure, aggregation, sinking and viral attack, but

the pressure on diatoms is about 25% stronger than that on

dinoflagellates, consistent with their higher growth rates

and similar maximum biomass densities for the two groups.

Since temperature and irradiance are correlated with nitrate

concentration and in some cases water column stability,

sensitivity to temperature and irradiance may reflect func-

tional group responses to these and other correlated vari-

ables. In aggregate, these traits indicate that diatoms will

have higher net biomass accumulation under lower irradi-

ances and lower temperatures and higher nitrate concentra-

tions compared to the dinoflagellates that will tend to have

higher increases in biomass in warmer more stratified

waters with higher irradiance and lower nitrate concentra-

tions, consistent with previous laboratory and field work

(Smayda & Reynolds 2003; Smayda & Trainer 2010; Irwin,

Nelles & Finkel 2012; Barton et al. 2013a; Brun et al. 2015;

Xie et al. 2015).

Consistent with previous work (Litchman et al. 2007),

these results clearly show that phytoplankton communities

are structured by traits at the functional group level.

Despite the success of predicting phytoplankton blooms at

the functional group level and knowledge of traits at the

species level (Irwin, Nelles & Finkel 2012; Edwards, Litch-

man & Klausmeier 2013), it has been very difficult to con-

sistently predict the occurrence of particular species of

interest, for example the prediction of toxic species blooms

(Zingone & Oksfeldt Enevoldsen 2000; Hallegraeff 2010).

We hypothesized that the individual species within these

functional groups are varying neutrally relative to the bio-

mass envelope of their respective functional group. Our

analysis shows that at Station L4, the vast majority of dia-

tom and dinoflagellates species are driven more by neutral

dynamics, relative to their total functional group biomass,

than by non-neutral factors (Fig. 3). This result provides a

resolution to the apparent paradox of the predictability of

functional groups and non-predictability of species:

stochastic variation dominates the dynamics at the species

level within functional groups.

The biomass of diatom and dinoflagellates species rela-

tive to the total biomass of their functional groups is

affected by a combination of niche-selecting and neutral

processes, with the net effect that most species behave neu-

trally within their functional groups 50 to 75% of the time.

Phytoplankton species richness at Station L4 is also deter-

mined by a combination of niche and neutral processes

(Vergnon, Dulvy & Freckleton 2009). Species will be niche

selected within their functional groups when they have

unique traits that affect their biomass dynamics under

transient conditions not included in our model, such as

susceptibility to viral attack and grazing or the formation

of resting stages. The dominance of neutral processes

within functional groups is consistent with the observation

that many North Atlantic diatom and dinoflagellate spe-

cies have wide niches relative to environmental variation

(Irwin, Nelles & Finkel 2012). Wide niches and niche over-

lap among species weaken the effect of niche selection and

means that demographic stochasticity is a very important

source of biomass variation at the species level. The domi-

nance of neutral processes on the biomass dynamics of

phytoplankton species means that it will be challenging to

predict the biomass of individual species relative to func-

tional group biomass.

Niche processes control the biomass dynamics of phyto-

plankton functional groups. By contrast, within their func-

tional groups, phytoplankton species are more often than

not ecologically equivalent. As a consequence, aggregation

of species into functional groups is a sensible approach for

modelling how phytoplankton communities respond to

environmental forcing. Aggregating species together within

functional groups averages out species-level demographic

stochasticity. When considering how to identify trait val-

ues to define the different phytoplankton functional

groups, we must take into account that there is some niche

differentiation some of the time among species within func-

tional groups. As a result, it is risky to use traits from a

single species to represent a functional group. In addition,
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traits determined from laboratory studies may not ade-

quately describe a functional group in the field due to

acclimation to multiple environmental conditions and bio-

tic interactions among species. Rather than use the average

of trait values from a few species studied in the laboratory

to represent a functional group, or a broad range of trait

values from many species to represent each functional

group (Follows et al. 2007), potentially the best approach

will be to find trait values representative of functional

groups as a whole using field data as we have done here or

using more complex mechanistic models.
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Fig. S1. Graphical diagnostic for the normality the total diatom

(top) and total dinoflagellate (bottom) log-biomasses observed at

Station L4 over the study period.

Fig. S2. Traceplots (left) and autocorrelations functions (ACF,

right) for parameters of the diatom functional group biomass

dynamics model: the intrinsic growth rate (r, top), the temperature

effect (b1, middle), and the irradiance effect (b2, bottom).

Fig. S3. Traceplots (left) and autocorrelations functions (ACF,

right) for parameters of the dinoflagellate functional group bio-

mass dynamics model: the intrinsic growth rate (r, top), the tem-

perature effect (b1, middle), and the irradiance effect (b2, bottom).

Fig. S4. Observed against predicted diatom (left) and dinoflagel-

late (right) functional group log-biomasses.

Fig. S5. Model residuals (observed-predicted functional group bio-

masses) over the study period (left) and associated autocorrelation

functions (ACFs, right).

Table S1. List of diatom and dinoflagellate species and morpho-

types from Station L4 time series.

Table S2. Results of Kolmogorov-Smirnov log-normality good-

ness-of-fit test on the observed total diatom and total dinoflagel-

late log biomasses over the study period.
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