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Abstract

Chlorophyll biomass in the surface ocean is regulated by a complex interaction of physiological, oceanographic, and
ecological factors and in turn regulates the rates of primary production and export of organic carbon to the deep ocean.
Mechanistic models of phytoplankton responses to climate change require the parameterization of many processes of
which we have limited knowledge. We develop a statistical approach to estimate the response of remote-sensed ocean
chlorophyll to a variety of physical and chemical variables. Irradiance over the mixed layer depth, surface nitrate, sea-surface
temperature, and latitude and longitude together can predict 83% of the variation in log chlorophyll in the North Atlantic.
Light and nitrate regulate biomass through an empirically determined minimum function explaining nearly 50% of the
variation in log chlorophyll by themselves and confirming that either light or macronutrients are often limiting and that
much of the variation in chlorophyll concentration is determined by bottom-up mechanisms. Assuming the dynamics of the
future ocean are governed by the same processes at work today, we should be able to apply these response functions to
future climate change scenarios, with changes in temperature, nutrient distributions, irradiance, and ocean physics.
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Introduction

The ocean is one of the most important reservoirs of inorganic

carbon and its ability to act as a long-term sink for CO2 is affected

by phytoplankton through the flux of photosynthetically fixed

carbon from the surface into the deep ocean, termed the biological

pump. The standing stock of phytoplankton biomass is a primary

determinant of the rates of primary production and export of

carbon out of the surface ocean [1]. There is accumulating

evidence that phytoplankton biomass and community composition

are changing in response to climate change [2–5]. Models often

have difficulty in accurately predicting changes in chlorophyll

from physical or chemical parameters beyond small spatial and

temporal scales due to the complex web of interacting processes

that can affect the standing-stock [6]. Predicting how phytoplank-

ton chlorophyll will respond to changes in climate, including

temperature, nutrient availability, and ocean circulation will

improve predictions of how climate change will alter the ocean’s

capacity to act as a carbon sink.

There are many approaches to describing the response of

phytoplankton standing stock and the biological pump to climate

change. The simplest is to provide upper and lower bounds on the

magnitude of the biological pump by comparing an abiotic ocean

with no phytoplankton to a super-biotic ocean in which all

upwelled nutrient is incorporated into organic matter through

phytoplankton photosynthesis [7,8]. These approaches cannot

predict how phytoplankton biomass and community structure will

acclimate or adapt to particular environmental change scenarios.

Alternatively, physiologically detailed mechanistic models incor-

porate the growth response of several biogeochemically defined

groups of phytoplankton to the availability of light and several

different potentially limiting nutrients balanced by loss terms such

as sinking and grazing by different classes of predators [9–12].

These physiologically mechanistic models can simulate relatively

rapid changes in phytoplankton growth rate, community compo-

sition and chlorophyll biomass. The quality of the output from these

models predictions is proportional to current knowledge of the

response of phytoplankton and the rest of the marine food web to

the appropriate environmental variables. Even the most complex of

these classes of models must make critical approximations, often

greatly simplifying the physiological response of phytoplankton to

limiting resources, viral and parasitic loss, competitive interactions

within trophic levels, and neglecting many of the higher trophic

levels and food web interactions entirely. Physiological responses of

phytoplankton to light and nutrient availability are complex, often

varying significantly between species and even ecotypes. Effects on

biomass due to grazing, parasitism, and competitive interactions are

poorly constrained due to limitations in both data and mechanistic

understanding. Data essential to these models are also sometimes

incomplete, for example the distribution of iron input and the

proportion that is bio-available is still fairly uncertain in many areas

of the ocean [13]. Ongoing work on all these fronts yields a

continually evolving view of phytoplankton and their interaction

with the marine environment.

Historically, field observations have yielded significant insight

into the environmental and biotic controls on phytoplankton

standing stock, community composition and rates of primary

production. Riley [14] demonstrated phytoplankton biomass as a
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function of temperature, nutrients, zooplankton, and water depth.

Despite using linear models with no interactions among predictors,

he was able to explain 60–80% of the variance in the data, but his

model coefficients were highly variable and difficult to interpret.

Sverdrup [15] demonstrated the spring blooming of phytoplank-

ton biomass in the Norwegian Sea as a function of the seasonal

shoaling of the upper mixed layer increasing the average

irradiance in a high-nutrient water column. Satellite observations

and international sampling programs have significantly increased

the temporal and spatial coverage of observations of upper ocean

chlorophyll, sea surface temperature, and other environmental co-

variables, allowing us to substantively determine how environ-

mental conditions regulate phytoplankton biomass in the oceans.

Analyses of remote-sensed chlorophyll document temporal shifts in

the geographic distribution of chlorophyll biomass and total

chlorophyll concentrations over the last 10 years [16–18] and the

community compensation irradiance for the spring bloom in the

North Atlantic [19]. Syntheses of satellite chlorophyll and field

data indicate that climate change and/or climatic oscillations are

responsible for changes in mean chlorophyll concentration and

primary production over recent decades [16,18,20,21]. In

response to the need for predicted chlorophyll concentrations in

modeled climate scenarios, Sarmiento et al. [22] predict annual

mean log chlorophyll using a linear regression against tempera-

ture, salinity, length of the growing season, and the maximum

winter mixed layer depth over 33 biogeochemical provinces. The

coefficients in their linear models and their predictive power vary

widely across regions.

We revisit the statistical idea proposed by Riley [14] using a

flexible data mining technique to extract the environmental

determinants of remote-sensed chlorophyll standing stock, incorpo-

rating variables that are mechanistic (light, nutrients, temperature,

and mixed layer depth) and proxies for many unavailable data that

vary regionally and temporally (location and month of year). Our

model extends earlier efforts, permitting non-linear responses to

environmental variables and allowing for interactions between

nutrients and light [22]. This model can be used to determine which

environmental conditions most strongly regulate photosynthetic

standing-stock biomass, the details of the functional response for

each environmental variable, and ultimately can be assembled to

predict biomass and primary production under a climate change

scenario in the context of a global circulation model.

Materials and Methods

Our model requires large amounts of data spanning a large

geographic region and many months. Satellite-based instruments

provide such observations of phytoplankton chlorophyll, surface

irradiance, and sea surface temperature. Other key variables

cannot be observed from space but must be assembled from in situ

observations and models to fill in gaps and are often available only

as climatologies.

Data
The assembly of global-scale databases of ocean color (chloro-

phyll, mg m23) and environmental variables: photosynthetically

available radiation at the sea surface (E, mmol photons m22), macro-

nutrient concentrations (NO3
2, PO4

32, mmol L21), mixed layer

depth (MLD, m), and sea-surface temperature (SST, uC) provides us

with a synoptic view of the distribution of phytoplankton and some of

its environmental predictors. The geographic and temporal

variables: latitude, longitude, and month of year are proxies for

missing environmental variables that change with location and time.

We mine these databases to extract the environmental controls and

correlates of surface chlorophyll concentration, determining empir-

ically how environmental conditions regulate chlorophyll biomass.

Chlorophyll concentrations and sea-surface irradiance were ob-

tained from the SeaWiFS project [23] and SST from the MODIS-

Aqua project [24] and all were averaged to 1u resolution, monthly

composites from 1999 to 2006. Nutrient climatologies (NO3
2,

PO4
32) were obtained from the World Ocean Atlas 2005 [25] and

are defined on a 1u monthly grid. MLD fields are monthly

climatologies using a temperature change of 60.2uC defined on a 2u
grid using NODC and NOAA data [26]. Data were restricted to lie

within a box from 10uN to 60uN and 80uW to 0u, encompassing

much of the North Atlantic, and totaling approximately 35,000

observations in each of 8 years. This region contains much of the

range of variability in the variables seen on a global scale and is a

well-studied and biogeochemically important part of the global

ocean. The iron-limited regions in the Southern Ocean and Pacific

were excluded because the iron data available are not of comparable

quality to the macronutrients in the World Ocean Atlas. A

subsequent analysis should expand the geographic extent, include

iron as a predictor variable, and compare the model across different

biogeographic provinces [27,28].

Analysis
Functional data analysis [29] extends linear and simple

parametric models to permit responses depending on much more

general functions. One approach to functional data analysis uses

generalized additive models to estimate functions of predictor

variables, adding together each effect to predict the response

variable. This technique allows a modeler to extract relationships

between the response and predictor variables from the data without

making strong assumptions about the shape of the response

function [30]. Using this approach, we model satellite-derived log

chlorophyll concentration as a mean value plus the sum of several

functions of environmental data. Our response functions are

piecewise cubic polynomials depending on one or two predictor

variables. To guard against over-fitting of the data, manifest by

excessive oscillations in the estimated response functions, the

likelihood function includes a penalty depending on the integral of

the square of the second derivative of the response function. The

data analysis was performed using R [31] and the generalized

additive model tools developed by Wood [32,33].

Our primary model incorporates the effects of light, nutrients,

temperature, location and month of year as

log10 chl~mzf1 E=MLD, NO-
3

� �
zf2 SSTð Þz

f3 longitude, latitudeð Þzf4 monthð Þ
ð1Þ

where m is the mean log chlorophyll and fi are functions estimated

from the data. We use log chlorophyll concentration as chlorophyll

is approximately log-normally distributed. Sea-surface irradiance

is divided by mixed layer depth to provide an estimate of the mean

near-surface irradiance experienced by phytoplankton entrained

in the mixed layer. A single function of mean irradiance and

nitrate is used instead of two separate functions to permit the

response to one factor to depend on the other. A natural

hypothesis is that when one resource is limiting, there will be little

or no effect on chlorophyll by changes in the other resources. The

degree to which this is true can be deduced from the estimated f1.

Geographic location is also allowed to affect chlorophyll through a

single function of latitude and longitude, and the resulting function

will be interpretable as a effect on chlorophyll determined by

geographic location. These responses, plus responses to SST and

month of year are all combined additively, and no interactions

Controls of Ocean Chlorophyll
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among these four responses are allowed in their effect on log

chlorophyll. It is certainly possible that there are further

interactions among these predictors. We chose to not include

further interactions when obtaining the average effect of each

combination of predictors in Eq. (1), because the data were

insufficient (e.g., not all temperature and latitude combinations are

available), and because visual interpretation of functions of three

or more variables is difficult.

In addition to the functions in Eq. (1), we also estimated

response functions predicting chlorophyll omitting each term in

turn, and using formulations with only one response function at a

time. Response functions were estimated using half of the data and

the predictive skill was assessed using the other half of the data.

The coefficient of determination (r2 = 12var(residual error)/

var(data) ) describes the proportion of variation in log chlorophyll

predicted by the model. The distribution of predicted log

chlorophyll, a scatter plot of predicted vs. observed data, and

the root mean square error was also used to assess the models.

Results

Satellite-determined chlorophyll in the North Atlantic is

approximately log normally distributed with a truncated left-hand

tail. Chlorophyll concentration varies over approximately 3 orders

of magnitude, ranging from 0.029 to 32.6 mg m23, with a median

of 0.17 mg chl m23 (median log chlorophyll is 20.77). The

standard deviation of log chlorophyll is 0.40, corresponding to a

relative change in chlorophyll concentration of 6150%. A

generalized additive model with functions (Eq. 1, in the methods)

of SST, E/MLD and NO3
2, latitude and longitude, and month of

the year accounts for 83% of the variance in log chlorophyll

(Figure 1). These functions show how log chlorophyll is affected by

changing conditions; predicted log chlorophyll is computed as the

mean 20.71 plus the deviations from mean log chlorophyll from

each of the four functions in Fig. 1. Maps of predicted log

chlorophyll replicate known geographic and temporal patterns in

chlorophyll (Figure 2). The quality of the model can additionally

be assessed with several other metrics: (i) there is a slight mismatch

between predicted values and observed data (observed = 1.03 N
predicted20.015, r2 = 0.83), (ii) the predicted variability in log

chlorophyll (standard deviation = 0.36) is slightly less than for

observed log chlorophyll (0.40) indicating a small amount of

unpredicted variation, and (iii) predicted chlorophyll has a roughly

50% error (root mean squared error in log chlorophyll of 0.175),

documenting a fair amount of residual variation, but not an

excessive amount since satellite chlorophyll often has similar error

compared to observed chlorophyll.

Figure 1. Functional response of log chlorophyll concentration (mg m23) to 4 sets of predictors: (a) mean irradiance and
climatological surface nitrate concentration, (b) sea surface temperature, (c) location in basin, and (d) month of year. Panels (a) and
(c) are contour maps of two variable response functions. Dashed lines on panels (b) and (d) indicate point estimates of the standard error of the
response function.
doi:10.1371/journal.pone.0003836.g001

Figure 2. Log chlorophyll concentration, March and August
1999–2006 averages, predicted using Eq. (1) and observed
satellite data.
doi:10.1371/journal.pone.0003836.g002
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The influence of the individual predictors can be assessed by their

relative contribution to the r2 of a sequence of nested generalized

additive models and their individual shape allows us to test inferences

about mechanistic roles of each predictor. No single predictor could

account for more that 51% of the variability in log chlorophyll and

many predictors have substantially less influence (Table 1). Chloro-

phyll concentration is largely regulated by the availability of light,

nutrients, and the effect of temperature, with half of the residual

variability accounted for by factors depending on geographic

location. Sea-surface temperature has a strong influence on log

chlorophyll concentration, with the effects ranging from +0.2 to 20.6

log units relative to the mean. The log chlorophyll-SST response

function (Figure 1b) has a fairly simple shape, indicating chlorophyll

elevated above the mean for SST ,15uC and rapidly decreasing as

temperatures increase above that level. Used as a single predictor,

SST can account for 51% of the variance in log chlorophyll, but

when combined with mean irradiance and nitrate, increases the

amount of variance explained from 47% (for mean irradiance and

nitrate alone) to 65% (Table 1). Much of the variability in

temperature is correlated with variation in light and nutrients, but

there is some significant additional information in the SST record.

As the primary resources necessary for growth, light and

nutrients might be expected to be important predictors of biomass

and the response function should document the need for both

resources to sustain higher concentrations of biomass. Since other

factors (e.g., grazing) also regulate biomass, the response function

for light and nutrients may not be exactly what would be expected

from a physiological point of view. Contours of the response

functions indicate how light (E/MLD) and nutrients (nitrate)

account for deviations from mean log chlorophyll (Figure 1a). The

combined light-nutrient function closely approximates a minimum

function, exhibiting characteristic ‘L’ shaped contour lines. At high

light, but low nutrients, changes in light lead to relatively small

changes in log chlorophyll, while changes in nutrients lead to

much larger changes in log chlorophyll; for example the 0.3

contour on the right half of Fig. 1a is nearly parallel to the E/

MLD axis. Using phosphate instead of nitrate produced similar

but less consistent ‘L’ shaped contour lines, and in the full model

the amount of variance explained was unchanged.

Geographic information accounts for an increase in the explained

variance in log chlorophyll from 65 to 83% and month of year adds

,1% to the r2 of the full model. The latitude-longitude response

shows some increases in chlorophyll near coasts and areas of known

upwelling as well as a minor latitudinal gradient, increasing away

from the mid-latitudes (Figure 1c). A function of longitude and

latitude appears to act as a catch-all proxy for many additional

factors which affect chlorophyll concentrations and vary spatially

such as periodic nutrient inputs and micronutrient availability. The

final predictor in the model accounts for variation in chlorophyll due

to time of year. We find that the spring and fall blooms do not appear

in this function (Figure 1d) having been accounted for by light and

nutrients and that the purely temporal response function has a small

amplitude (60.06 log units, corresponding to 615% variation in

chlorophyll concentration).

Discussion

Climate change is altering the temperature and pH of the

oceans [34], species phenology [35,36], and the size of the major

ocean gyres [16]. Ocean models predict future changes in large-

scale circulation, currents, patterns of stratification, and thus the

distribution of nutrients in the euphotic zone and the relative

depth of the mixed layer and compensation depth. Our model

provides predictions of phytoplankton chlorophyll biomass based

on environmental parameters that can be incorporated into

models of future ocean environments. Predicted chlorophyll

biomass can then be used to estimate rates of primary and export

production [1,18,37]. The empirical functions we obtain from

functional data analysis are interpreted below as ecological

responses of the phytoplankton community, incorporating growth

and loss terms (e.g., grazing). These responses are not purely

physiological but are synthetic combinations of many factors.

The model predicts 83% of the month-to-month variation in log

chlorophyll in the North Atlantic over a span of 8 years. Light and

nutrient resources available to phytoplankton account for the

majority of this variation, indicating that resources determining

biomass-normalized growth rates can be used to predict standing

stock chlorophyll biomass. This is not necessarily expected as

chlorophyll concentration is a pool and not a rate. Standing stock

is affected by the balance between factors responsible for growth

and loss; changes in standing stock are due to transient imbalances

between growth and loss. Environmental factors that promote

growth appear prominently in our model, but loss terms such as

grazing by zooplankton, aggregation and sinking, advection, and

cell death by viruses, parasites, or apoptotic mechanisms are not

explicitly included. The fact that we can predict chlorophyll

concentration from light and nutrients, which determine growth

rates, leads us to conclude that loss rates are often dependent on

growth rates or chlorophyll concentration and that biomass is

effectively regulated by bottom-up factors.

The availability of light and macronutrients limit phytoplankton

growth in much of the ocean [38–41]. If biomass is regulated by

availability of resources through a mechanistic link to growth rates

then this should be identifiable in the response function for light and

macronutrients. As predicted the effect of average irradiance and

nitrate concentration on chlorophyll concentration closely resembles

a minimum function (Figure 1a), showing that in general either light

or nitrate limits the concentration of chlorophyll biomass. This is

precisely the effect resource availability should have on growth rate,

indicating that the bottom-up effects of resources on growth rates

have a dominant role in regulating biomass. Our result is consistent

with the common observation that nitrate limits biomass in the

majority of the North Atlantic in the summer. There are minor

deviations from the minimum function where neither light nor

nitrate is strongly limiting; these deviations are most common at low

Table 1. Summary statistics for predictions of the full model
(Eq. 1) and submodels: the proportion of variance in log
chlorophyll concentration explained by the models (r2) and
the root-mean-square deviation of predicted from observed
log chlorophyll (RMS error).

Model Predictors r2 RMS Error

E/MLD & NO3
2, SST, Lat & Long, Month 0.83 0.17

E/MLD & NO3
2, SST, Lat & Long 0.83 0.17

E/MLD & NO3
2, SST 0.65 0.24

E/MLD & PO4
32 0.56 0.27

E/MLD & NO3
2 0.47 0.29

SST 0.51 0.28

PO4
32 0.49 0.29

NO3
2 0.39 0.31

E/MLD 0.04 0.39

Month 0.02 0.40

doi:10.1371/journal.pone.0003836.t001
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E/MLD and low nitrate concentrations. At low nitrate concentra-

tions an increase in irradiance has less of an effect on chlorophyll

than at higher nitrate concentrations. Co-limitation can be identified

along a vector through the bend in the L-shaped contours of the

minimum function (Figure 1a). Phosphate is limiting in parts of the

subtropical North Atlantic [41] and our nitrate-based model predicts

higher than observed chlorophyll in this region. If mean irradiance

and phosphate concentration are used in Eq (1), the predictive power

of the full model is essentially unchanged, but the response function

(not shown) deviates more from a minimum function because

phosphate is not limiting in most of the North Atlantic. Similar over-

predictions of chlorophyll will be observed in Fe-limited regions;

models outside the North Atlantic should incorporate both Fe and

phosphate.

In our framework, SST is the best single predictor of log

chlorophyll, explaining roughly half of the total variability (Table 1).

Sea-surface temperature affects photosynthetic rates [2,42], is

correlated with MLD, and can be linked to nutrient availability

[43,44] and temporal changes in irradiance, nutrients, and

stratification [45]. The temperature response function is very

different from the physiological relationship between growth rate

and temperature, which generally increases exponentially until a

viability threshold is exceeded [42]. Each phytoplankton species has

an optimal temperature for growth, but the global community

contains sufficient diversity that temperature has little direct effect on

regulating biomass through direct physiological mechanisms. A

potential interpretation of the response (Fig. 1b) is that it is the signal

of a temperature-nutrient relationship: surface nutrients decline with

increasing temperature above ,15uC, although the details of this

relationship vary with latitude [44]. If nutrients are not included in

the model and SST is used as a single predictor, the magnitude of the

temperature effect is greatly increased (results not shown), indicating

that much of the effect of nutrients in the temperature data is, in fact,

represented by the nutrient data. To the extent that nutrients and

SST are correlated, the statistical model is unable to distinguish the

effects of one predictor from the other; the chlorophyll response is

divided between the two predictors. If dramatic changes in climate

occur, perhaps due to a regime shift, leading to changes in these

correlations, the model predictions may be in error, although the

approach taken here is conservative because current responses are

divided among the correlated predictors.

An alternate interpretation for the decrease in chlorophyll

described by the SST response function is as a change in the balance

between phytoplankton growth and losses by grazing. The growth

rate of herbivorous protists and copepods increases more rapidly than

the growth rate of phytoplankton as temperature increases [46]. The

temperature response function (Fig 1b) may be a signal of increased

grazing pressure, and a change in the relative effect of growth and

loss terms on biomass, with the exponential decrease in chlorophyll

biomass above 15uC caused by the exponential increase in growth of

predators relative to prey. Differential responses of organisms from

different trophic levels to changes in climate (and associated

environmental variables) may have drastic and very difficult to

predict effects on marine food webs [35].

Light, nutrients, and temperature are primary determinants of

phytoplankton growth rate and biomass, but many additional

physical and chemical factors influence chlorophyll concentration

and have not been included in the model. Geographic location is

correlated with many factors influencing average chlorophyll,

including bathymetric effects on mixing and advection and

resource input from aeolian and riverine sources. Variability on

scales smaller than our sampling resolution (1u61u and 1 month) is

hidden in our analysis and could bias the relationships between mean

environmental conditions and predicted chlorophyll concentration,

because phytoplankton respond not only to average resource levels,

but also to the amplitude and frequency of variability in irradiance

and nutrients that changes with vertical stratification [47].

Geographically localized sources of variation in resources arise from

several sources including episodic inputs of nutrients from rivers,

mixing due to storms and eddies, and vertical mixing at the Brunt-

Väisälä frequency [48,49]. The contours of the latitude-longitude

response function show a broad latitudinal trend in log chlorophyll,

with the largest increases near coastlines (Fig 1c), showing that

location acts as an effective proxy for many factors beyond light,

nutrients, and temperature. An ideal model would not use latitude

and longitude explicitly, but this term in the model is a convenient

short-hand given the complexity of the problem and limitations in

some of the available data.

Our model is memoryless, meaning that neither the history of

chlorophyll concentration nor our predictor variables is used in the

prediction of chlorophyll. Phytoplankton grow rapidly, with a

potential of 30 or more doublings per month, and factors other

than seed population size must dominate the regulation of

chlorophyll concentration, or we should observe changes on the

order of a factor of 109 (,230) during a month. The availability of

light and nutrients, temperature, and geographic location largely

account for our sense of temporal sequence in the distribution of

chlorophyll. To test this idea, we added the month of the year to

our generalized additive model to see how much residual variation

could be explained. The resulting function (Figure 1d) has a small

amplitude, 60.06 log units, with a peak in July and trough in

March and added about 1% to the r2 of the model (Table 1). The

North Atlantic spring bloom does not appear in this function as it

has already been accounted for by light and nutrients. These small

corrections to the model with three response functions (f1, f2, f3)

indicate that month of year is a minor predictor after other factors

are incorporated. If month of year is used as the sole predictor (not

shown), a stronger seasonal trend with troughs in January and

August, and a peak in April is obtained, but only accounts for 3%

of the total variation in log chlorophyll.

Our approach demonstrates that a fairly simple statistical model

can account for the majority (83%) of variation in log chlorophyll

concentration across 8 years of North Atlantic data. Bottom-up

factors (mean irradiance and nitrate) alone account for 47% of the

variation and demonstrate a mechanistic relationship: biomass is

affected by changes in light or macronutrient, whichever is limiting.

Further study will refine this approach, perhaps by geographic sub-

division, e.g., into biogeographic provinces [27], but the results from

this attempt combining satellite data and functional data analysis

shows promising results. Anthropogenic climate change is expected

to change many of the environmental variables that regulate the

distribution of chlorophyll biomass, most notably temperature, mean

irradiance, and nutrient availability. The simplicity of the model

suggests a computationally simple way to predict changes in

chlorophyll distribution with changes in mean irradiance, nutrient

concentrations, and temperature, which can be predicted by ocean

general circulation models.
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