Cellular automaton model of chemical wave propagation on fractals
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A three-state cellular automaton (CA) model of nucleation and chemical wave propagation on
fractal lattices is discussed. In the CA, seeds produce spreading wavefronts of active or
transformed sites which mutually annihilate on collision. Many chemical and biological
growth processes display this behavior. Pattern formation and growth from isolated seeds and
from random initial distributions of seeds are considered. Steady-state behavior for continuous
seeding is also discussed. For isolated seeds, surface and volume growth exponents on fractals
do not show the simple relation that holds for homogeneous lattices, and lattice topology plays
an important dynamical role. For initial seeding, mean-field theory predicts that growth
depends on the fractal dimension D (since the minimum path dimension is one). However the
fractal gap hierarchy (lacunarity) introduces fluctuation contributions. For continuous
seeding entirely new effects arise. On sponge-like fractals oscillators are created; these
eventually fill the lattice even at low seeding density. However tree-like fractals cannot support
oscillators, and instead exhibit dynamical scaling behavior. For mixed fractals complicated

periodic phenomena can arise.

I. INTRODUCTION

There is an interesting connection between nucleation
processes' and the spreading of chemical waves? in random
or homogeneous media. In nucleation, one phase grows from
random seeds into another as a system of (spherical) propa-
gating fronts. But the surface of the growing phase can also
represent the active wavefront spreading through a quies-
cent field in an excitable medium, e.g., wave propagation in
the Belousov-Zhabotinksky (BZ) reaction.>* In such pro-
cesses the excited state returns to quiescence through a re-
fractory state.

In this study, we will exploit this connection by relating
surface and volume growth, and by relating mean-field theo-
ries of nucleation in homogeneous media to far more erratic
growth phenomena in random media. Specifically, wave-
front propagation (the dynamical part of the model) is imi-
tated by a cellular automaton (CA.),® and the random medi-
um (the static part) is modeled by a fractal lattice® of
variable structure.

Biologically, this model describes the spread of viral or
fungal infection, in complicated spaces like the lungs or cen-
tral nervous system or tree bark.” For example, rabies
(which has no viremia) spreads in this way by propagating
along nerve fibers from the point of infection. The model is
an epidemic process,® with sure infection of neighbors, on a
fractal of variable dimension and connectedness. Chemical-
ly, the model represents tarnishing reactions on a spongy
catalyst® or wave propagation on percolation clusters of
catalytic beads, e.g., the BZ reaction on ferroin impregnated
beads.'® Nucleation examples of such processes are charac-
terized by sharp, dispersionless fronts of activity, which can
leave a damaged or transformed region in their wake. Wave
propagation examples show a variety of effects depending on
the history and structure of the medium.

Propagation of the active front is imitated by a three-
state cellular automaton (CA)!! defined as follows: Cells
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(sites) on the lattice can be in one of three states, Q (quies-
cent), A (active), or R (refractory). The CA rule through
one time step is

Q (neighboring A) SA,
A -R,

1.1
R ~Q, (D
Q (not neighboring A) —Q,

where all lattice sites are updated simultaneously. Neighbor-
hood is specified by the square-matching-lattice topology:
Any “corner” or *“edge” site of a given site is a neighbor. A
variety of behavior is displayed by this CA, but characteristi-
cally active waves spread out from (random) seeds and an-
nihilate on collision.

The underlying fractal lattice, ¥ say, is generated by
decimation of the square, using Vicsek snowflake (%), Sier-
pinski carpet (%), and square (%) generators.'2 The frac-
tal dimension®'? D and connectedness ' of the fractal can be
altered by changing generator probabilities, p ., etc., so that
random fractal percolation clusters, with any De[log, 5,2]
can be produced. Since CA neighborhood and lattice con-
nectedness have identical local topologies, the CA always
propagates on any realization of #. An important simplify-
ing feature of # is that the minimum path exponent'> d_,_ is
one (as measured in first-passage-time simulations) and so
D equals d ., the chemical dimension, because

dchem = D/dmin' (1-2)

Dimension d,.,, controls the growth of area swept out by
fronts spreading at fixed velocity on .7 .!¢ Therefore the sim-
plest possible growth law depends on D alone.

The reference dynamical picture is provided by the
mean-field theory of continuous nucleation and growth.!”'°
In this picture, surface wavefronts of A sites grow outwards
at constant velocity v, and the volume fraction, fsay, swept
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out by the first passage of A is given by

th+l
=1 - .
A exP( d+ 1)

Here d is the Euclidean dimension of the supporting space or
lattice, and X is a shape-dependent constant proportional to
v? and the seeding rate. For initial seeding?®?' at z = 1 the
volume swept out by the first passage of A is given by

(1.3)

A1) =1 —exp( — Kt?). (1.4)
The surface population of A for these different seeding mod-
els is given by the time derivatives of Egs. (1.3) and (1.4).
Even in standard lattice geometries the region occupied by A
and its surface may have a complicated topology.**}

Provided initial seeding is random (Poisson) and the
medium is homogeneous, mean-field equations like (1.3)
and (1.4) (and their time derivatives) describe population
dynamics exactly. However, in an inhomogeneous medium
deviations from mean-field theory occur, and these are most
pronounced for processes whose length scale is below the
maximum gap size. Therefore such deviations persist in
some sense at all length and time scales in a fractal medium
where the correlation length (gap size) is infinite.®

Lattice structure also plays a crucial role in the contin-
uous seeding of an excitable medium,”* where new seeds
form in regions which have been repeatedly swept by active
waves. (This contrasts with the irreversible behavior of sim-
ple nucleation.) The CA may produce expanding, self-sus-
taining patterns or (where such patterns cannot form) dy-
namical scaling of essentially transient steady-state patterns.

In Sec. II we briefly discuss the construction and char-
acterization of the continuously variable fractal lattices that
are used as a supporting medium.

In Sec. III we discuss single-site growth showing how
growth exponent anomalies arise on fractals. Details of time
evolution are also related to connectedness and (discrete)
scaling; the difference in propagation on tree-like and
sponge-like fractals is apparent.'*

In Sec. IV we discuss growth for initial seeding, where
nucleation and wave propagation are related in a simple way.
On fractals, fluctuations are again important, and the role of
lacunarity (gap structure) is discussed. Growth displays a
continuous dynamical symmetry on sponges but a discrete
symmetry on trees. We present simulation and exact enu-
meration results confirming this.

In Sec. V we describe time evolution of continuously
seeded chemical waves on fractals, showing how the re-
sponse of the medium depends on fractal structure. A non-
linear Markov chain model accurately describes behavior at
high seeding density. At low seeding density this model also
applies to the self-sustaining patterns that form on sponge-
like fractals and homogeneous lattices. A dynamical scaling
theory is discussed for the transient patterns that form on
tree-like fractals at low seeding density; such patterns self-
destruct if seeding stops. The rich variety of self-sustaining
states that arise when seeding is interrupted is also men-
tioned.

In Sec. VI we summarize our results and discuss their
implications.

1l. VARIABLE FRACTAL MEDIUM FOR CA GROWTH

The algorithm for generating connected fractal lattices
to support CA growth has been described in Ref. 12. It uses
recursive decimation of square elements by mixing two or
more generators to produce a lattice ¥ of well defined frac-
tal dimension D. If we mix the Vicsek snowflake (.%), Sier-
pinski carpet (%€ ), and square-matching-lattice (.¢") gener-
ators we can produce a “planar” fractal medium with any D
between D, =log 5/log 3 and D = 2. In particular, we
can generate lattices of the same .D but different connected-
ness by mixing generators. In this study we use lattices deci-
mated to level / = 3,4, and 5. If

Prob{#} =p,, Prob{¥}=p,,

and Prob{.L}=p, =1—p, —p,, (2.1)
then
log u(p.ps)
log A
_log[5ps + 894 +9(1 —py —py)]

log 3 ’
(2.2)

where u is the mass scale factor and A ( = 3) is the length
scale factor for .% . We can plot D as a function of p ., p.,
and p, as a three-component mixture.?> The contours of
constant D are found from the equation

aD ab
—8py +—bp, =0, 2.3)
ap ap
which, from Eq. (2.2), reduces to
—4 -1
é ép., =0. 2.4
2103 p‘y+,u.log3 P (2.4)

The contour corresponding to D = D, contours are shown
in Fig. 1, and three mixtures: (a), (b), and (c¢) with this
dimension are indicated. From Eq. (2.4), all other constant

FIG. 1. The triangle with unit sides shows the mixture space for three frac-
tal generators. The vertices ., ¢, and & correspond to pure snowflake,
carpet and square-matching lattice, respectively. All lattice configurations
on the line from vertex € to edge . . correspond to the fractal dimension
D =D, =log8/log 3. All contours for any constant D are parallel to this
line. Three mixtures with D=D, are marked: (a) at
p. =5/8,(b) atp, = 1/4, and (c) at p,. = 0. Realizations for / =4 are
shown in Fig. 2. For mixture (a), the corresponding generator probabilities
are indicated by the thin lines: @0 =p , ,ay=p, ,andal =p .
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contours are parallel to this D, line. For mixture (a) we
have drawn the component probabilities: ao for %, ay for
%, and aA for .Z. Realizations for mixtures (a), (b), and
(c) with D = D, = log 8/log 3 are shown in Fig. 2. In gen-
eral, the tree-like or sponge-like character'® (connected-
ness) depends on generator probabilities.

Ili. GROWTH FROM SINGLE SITES ON FRACTALS

Growth from isolated seeds is now examined: On frac-
tals even this simple process shows deviations from mean-
field behavior. Fractal dimension D is often estimated by
counting the number of sites at Euclidean distance r from an
arbitrary site r say; this number increases like 7°. Similarly,
if d i, = 1, the neighborhood |.#"(r,t)| swept out at time ¢
increases like #°, so CA propagation provides a dynamical
way of measuring D. Because ./"(r,?) is the union of succes-
sive “rings” of activity & (r,s), therefore

H

Nty = || = E | Z(r,s)| = Z A(r,s),
s=1 s=1
3.1)

where |- - -| denote the number of elements in a set.”® Mean-
field theory then predicts that boundary population A(r,f)
should increase (smoothly) as 2~ !. However we will see
that this need not be true on fractals because of the infinite
correlation length of spatial fluctuations.

The predictability of growth is related to connectedness:
On the snowflake (a tree), the spread of excitation is simpli-
fied by its quasi-one-dimensional structure, i.¢., there is only
one path between any two lattice points. Counting the num-
ber of neighbors of any lattice site can be done recursively or
by exact enumeration using lattice symmetry, but since deci-
mation creates new neighborhood topologies as the decima-
tion level / increases, this recursive counting requires small,
continuous modifications.?” In contrast, on sponge-like frac-
tals like the carpet, counting neighborhoods of a given radius
is difficult because the number of distinct topologies grows
very rapidly with /, so a simple recursive algorithm does not
exist.”® However, lattice averages are better approximated
by continuous scaling on sponges because fluctuations can-
cel. Weillustrate these statements with calculations for seeds
at corner sites.

First we develop a formalism for the growth exponent in
the number of boundary sites of any lattice neighborhood.
Because growth is not a stationary process,”**! we define an
instantaneous “surface” (or boundary site) growth expo-
nent cx(r,t) for the site at r at time ¢ by

a(r,t) =log, A(r,z). (3.2)

where, to be precise, 4(r,t) is the number of active sites at
time ¢ that have evolved from a seed at r at 1 = 1. Then we
define the distribution function F of a by

Fla;r,t) =—;— i 0 [a —log, A(r,5)], (3.3)

s=1
where 6 is the Heaviside function. Using Fas integrator®? we
can define moments of a by

am(rt) = on a™ dF(a;r,t). (3.4)
0

FIG. 2. Figure shows random fractal lattices grown at compositions giving
the carpet fractal dimension D, = log 8/log 3. The mixtures are: {a)
p,=3/3%,p, =5/8, p,=9/32; (b)p, =3/16, p, =1/4,
P, =9/16; (¢)p, =1/4,p, =0,p , = 3/4. The carpet component de-
creases from vertex ¢ to edge .#".% along the D = D, line in Fig. 1.
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Lattice averages {---) of these moments are defined in the

usual way as

(a™(tn)) = r a™ d (F(a;r,t))
(1)

= a’"d[ — F(art)] (3.5)
I
We can calculate & for the corner site r, of the snowflake
as follows. A lower bound a, (r,,¥) at times ¥ (j = 1,2,...)
is given by
1 & logd(r,s) 1

¥
a,(r,¥) == =— lo A(r,.8)
’ ¥y& log¥ 3’10331 gsl;ll

=__.1__10g3,3,-_\ =l,
Yjlog 3 3
exactly for allj. Similarly an upper bound a (r..,¥ ) at times
¥ can be calculated by summing the contribution from
successive time intervals [3’ —1,3/]. This gives
i—1 3k -1
3 + ¥y + ¥y kz—:l k+1°
Asj-» oo the second term on the right converges rapidly and
the third term can also be shown to vanish also by replacing
the sum by an integral and using "Hopital’s rule. So

3.5)

ag(r,¥) = (3.6)

lim e, (r,,%) = 1/3,

FIa -]
and therefore @ for the corner site®® of the snowflake is 1/3,
which is less than D, — 1 =log 5/1log 3 — 1. In fact, exact
calculations of the lattice average of a(]) up to /=35 ex-
trapolate to 0.41... < D, — 1.3 It seems that (a) . is less
than D, — 1, the mean-field value, because log, 4(r,f) is
very small very often on .%. In general, such a discrepancy
will arise when there is an infinite gap hierarchy on the sup-
porting fractals so that the mean-field exponent relation is
never achieved even at arbitrarily large distances. But the
mean-field result @ = D — 1 does hold if we assume that the
instantaneous value a(r,?) is constant; this result is expected
on lattices which Gefen et al.>® describe as “arbitrarily close
to translational invariance,” i.e., fractals for which the sur-
face-growth-exponent distribution F(a) is the Heaviside
function, and the lacunarity vanishes.

The large fluctuations in 4 are evident in Figs. 3 and 4
which show corner-site growth on % and % . Figure 3 shows
an exact calculation of 4 - (r,?) from a seed at a corner site
r, on the snowflake . (5). Notice how often 4 takes very
low values ( = 1). A basic recursion pattern {1,1,3} in the 4
population underlies this times series 4 ;. (r,,t). This coher-
ence effect also appears eventually in growth from seeds at
any site due to the exact, recursive structure of the snow-
flake. For comparison, Fig. 4 shows 4 (r_,t) for growth
from a corner seed on the carpet € (5). No clear recursive
pattern is detectable in this time series, in spite of the fact
that it represents deterministic growth from a point of high
symmetry on an exact fractal. The reason is that activity
spreads in a complicated way along the many possible paths
on the carpet. This induced randomness also shows itself in
the increasing complexity of the algorithm require for an
exact, recursive calculation of 4 (r,,?) on the carpet.?”?®

3.7

240. r— H H 1 +
180. [ -
< 120.1 .
60.
0 Wi W L
0 60 120. 180. 240
t

FIG. 3. Plot shows calculated active population 4 - (r,,#) vs ¢ for growth
from corner seed at r, on . (5). Time series is exactly self-similar, obeying
scaling law: 4, (r_,At) = A4, (r_,1), for A =3, and ¢ a positive integer.
Largest peaks scale linearly like 1 ', with exponent 1> D, — 1 = 0.4650.
However the time average of log, 4(r.,f) which gives the “surface” growth

exponentis 1/3 < D, — 1 [see Eqgs. (3.5) and (3.7) ], whereas area under
curve . _ 4, (r.,s) = N(r,r) increases like . On infinite .4 - (r,1)

returns to 1 infinitely often.

As expected, the summed variable N(r,,t) grows as ¢ 2 for
the carpet and looks far smoother than 4.

Population fluctuations on the boundary 4.# of a subset
A of &, with origin or center at site r, also appear if the
mass M( = |.#|) of the subset is measured “statically” by
covering successively larger neighborhoods of a given site
with squares. However these “static” boundary fluctuations
can easily be calculated recursively for either % or %, or any
exact fractal ¢

270. 7

Ac

180. ~

0. 80, 160. 240. 320.

FIG. 4. Plot shows simulated active population 4., (r.,t) vs ¢, for corner
seed at r. on ¥ (5). Growth curve 4, shows increasing, random fluctu-
ations, as ¢ increases, with no obvious self-similarity, although CA rule is
deterministic, and corner seed is a point of dilatation symmetry of carpet.
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IV. GROWTH FOR INITIAL SEEDING FOR CA ON
FRACTALS

Growth from a single seed and growth from many, ran-
dom seeds are related®**’ because the argument of the expo-
nential in the mean-field equations corresponds to the vol-
ume swept out by a single site. In the case of a Poisson
distribution of seeds, exponentiating this argument is for-
mally equivalent to summing the contributions from many
sites by the inclusion—exclusion principle.*® Also, on a ho-
mogeneous lattice every neighborhood is equivalent, so both
the single-seed and many-seed growth problems can be ex-
actly solved. But fluctuations increase algebraically with dis-
tance on fractals and this produces important deviations
from mean-field theory in the initial seeding case. Figure 5
shows six snapshots (a) through (f) of growth, for initial
seeding, on a random fractal (decimated to /=3 at
Ps» =0.5and p, =0.5, giving D = 1.77...). Frame (a) is
the lattice state after seeding. Frames (b) through (f) are the
lattice states [given by the CA rule (1.1)] at times
t=1,2,...,5. Here, and in all other pictures of the lattice
state, A sites are black, R sites are thick-edged squares, and
Q sites are white squares. Even on these small lattices the
raggedness of the growing front is apparent,'® and it is even
more obvious on large lattices displayed in color.

A dynamical scaling theory for initial seeding on frac-
tals can be developed as follows. In simulations of this seed-
ing process, a finite realization ¥ (I) of the (true) fractal
F =lim,_ _ F (1) is seeded with probability p per site, at
time 7 = 1. Then we conjecture that fraction of sites f (#,p,/)
that have always been quiescent up to time ¢ is given exactly
by

3475
g=1-—p. (4.2)
Equation (4.1) immediately gives
So(tp,]) = gVsP (gPN D), (4.3)
where
SN(r,t;1) = N(r,t;]) — N(&;]) (4.4)
and
1
Nh = (| (0 6D|) = —— A (r,8])
| | [ (D] re-/z(l) | |
(4.5)

is the lattice average of the number of sites |.#"(r,#;/) | within
radius ¢ of site r. Then Eq. (4.3) reduces to

o0 J . j
fQ (t; ’1) — qN(t,I) z (ln q) <[6N(r!t)[) ]j> .
i
Asg— 1~ for finite ¢, or for 5N = 0 the homogeneous lattice
case, this gives the mean-field result?!

So(tpl) = g" ", (4.7)
Exact calculations on the snowflake for / = 3,4, and 5 sug-
gest the exactness of Eq. (4.1) and the limiting behavior of
Eq. (4.7) at low seeding density. For example, up to /=3
the evolution on (/) can be represented explicitly by a
vector of polynomials*® in g, and for / = 4 and 5 terms can be
enumerated exactly. These results are in excellent agreement
with very accurate Monte Carlo simulations of the time evo-
lution. An interesting consequence of the moment expansion
(4.6) is that the first p-dependent correction to f, is the
second moment contribution }(In ¢)2(6N(r,t)?) and, in
logarithmic plots, this term depresses the growth exponent,
i.e., the effective fractal dimension, below the mean-field val-

(4.6)

j=o

. —_ | #7°Ce, 0] .. . . .
fotph) = (q ) (4.1)  ye D; this is shown by simulation results given later.
where This formalism can be extended using a quantitative
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measure of the lacunarity or characteristic hierarchy of gaps
in a fractal. After Gefen ef al.>® we write the number of sites
at large lattice contour distance ¢ from site r as

N(r,t) =g(r)t?, (4.8)

where g(r) depends only on r. We will assume that /— o for
a moment. It is important that in general g has a finite width
even as £ — oo because of the gap hierarchy; only in the limit
of vanishing lacunarity is the distribution for g a step func-
tion. This ansatz means that

(N) = (g)t?, (4.9)
and the central moments are given by
([6N1%) = (1881 )", (4.10)

Using Egs. (4.9) and (4.10) in Eq. (4.6), as /- w0, gives fq
on.¥ as

foltp) =go® 3 (gl oI,
o k!

The exact enumerations shown in Fig. 6 confirm that the k th
central moment of the snowflake increases with exponent
kD, with D = D .. The measured slopes of the graphs of
In{(6N* (¢)) vsInt for k =2, 3,and 4:i.e., 3.0, 4.4, and 5.8,
compare very well with theoretical values (kD ):i.e., 2.93,
4.39, and 5.86. This result implies that mean-field behavior
with growth exponent D occurs at early times, but that fluc-
tuations depress this growth exponent below D at slightly
later times due to the second moment contribution. This ef-
fect should be contrasted with growth on homogeneous lat-
tices where mean-field theory is exact for Poisson seeding, or
with growth on random lattices with a finite maximum gap
size where fluctuation effects are “controlled” by the central
limit theorem*® and (through the usual cancellation effect of
random errors) grow relatively slowly at distances greater
than the gap size.

We characterize the lacunarity amplitudes g(r) with a
distribution function G defined as follows:

(4.11)

In(6N¥)

Int

FIG. 6. Exact enumerations of central moments for growth on ' (5) are
shown. Graphs of In{(8N(r,t))*) vs In ¢ gives slope kD, = k X 1.465...,
i.e., the exponent in Eq. (4.11). For k =2 measured slope is 3.0 and
2D, =2.93; for k = 3 measured slope is 4.4 and 3D, =4.39; for k=4
measured slope is 5.8 and 4D, = 5.86.
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G(v) = lim G(y,]) = lim ——— 01y —gr;Dl,
() = lim G(y, lim If(l)lre;m [y —g(r;D]
(4.12)

which implies the central moments of N can be written as

+ o
(BN(r5D %) = t“’j (7 = G(D, (4.13)

— @

where

_ _ “+
y=v() =f vdG(y;l).

—

(4.14)
The amplitude g for any site r is given by

t
g(r) = lim g(r,t) = lim ¢ ~' S N(r,s)s— P, (4.15)
t— f~ s=1

but in practice large ¢ values are satisfactory for estimating g.
The lattice averages can be expressed in terms of the distribu-
tion G. The shape of the lacunarity distribution G(y;!) is
dependent in an important way on lattice topology. Figure 7
shows this for the snowflake and carpet. On . (5) a large
fraction of topologically similar sites lie near the ends of the
(tree) branches and these have small amplitudes g(r), so
G , rises sharply at small . However, there are many differ-
ent site topologies with a large number of near neighbors
[large g(r) ] and so G increases to unity smoothly at large y.
Conversely, on % (5), many sites lie near small holes and
few sites near large ones, so G, rises smoothly at small ¥ and
stops abruptly at large y. For mixed fractals, G tends to
change smoothly at both small and large 7. Monte Carlo
estimates of G using the formula (4.12) confirm this descrip-
tion.

In principle it is possible to construct fractals of some
chosen D so that the gaps “look” small, i.e., the fractal has
vanishing lacunarity and is arbitrarily close to being transla-
tionally invariant.>® In this case the distribution function G
is close to the Heaviside step function, and the second and
higher central moments for & all become very small. Since

FIG. 7. Graphs of Monte Carlo estimates of lacunarity distributions
G, (y) for #(5) and G, (y) for € (5) are plotted against the lacunarity
amplitude parameter y. G - rises sharply at small y because the many “pe-
rimeter” sites on .% have few neighbors. G, rises sharply at large y because
the many sites round small holes in € have many neighbors.
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this means that (N(r,?)) depends only on ¢ and not r, the
time evolution is described by the first mean-field factor in
Eq. (4.3), so that these translationally invariant fractals
should behave (in many important respects) like homoge-
neous lattices.

Another interesting effect can arise from the existence of
definite scaling length A in % .*! This effect depends on con-
nectedness: It is suppressed on sponge-like structures, like
the carpet, but is pronounced on trees like the snowflake.
The effect shows itself as structure in the eventual decay of
fq tozeroandisintimately connected with the coherent fluc-
tuations on % in the spreading of wavefronts from single
sites discussed earlier. It can be understood in a formal way
by writing the scaling ansatz

N(At) = uN(1), (4.16)

which relates A (distance) and ¢ (mass) scaling in the hier-
archical structure of .%. The smoothest solution of Eq.
(4.16) is the mean-field result

N(1) ~tP = ploeniioed, (4.17)

but there are infinitely many other solutions of the func-
tional equation (4.16), and these allow different dynamical
symmetries in the time evolution.

These ideas can be examined by extracting an effective
fractal dimension D.; from logarithmic plots: Using Eq.
(4.17) in Eq. (4.7) gives

log log, [ /o (#;p) ] = D¢y log £ + const, (4.18)
where D, is smooth for continuous dilatation symmetry of
Z . But discrete static, lattice scaling also allows discrete
dynamic scaling, where A and u enter separately into the

growth law, and argument from Eq. (4.16) suggests that f,
is invariant under the discrete scaling transformation

p-p/u, andr-At. (4.19)

At high seeding density this reflects the discrete, local struc-
ture of the lattice. At low seeding density it indicates how, at
long times and large distances, the scaled history of growth
goes through the same structured phases, as the high-den-
sity, local time evolution, because of the self-similarity of %
under dilatation by A. On logarithmic plots, this discrete
dynamical scaling means f, (#;p) has the following property:

log log, f, (£;p) + log u = log log, fo (At;p/u), (4.20)
so that the graph of loglog, fo vs log ¢, is shifted by the
vector {log u,log A} for every application of Eq. (4.19). To
relate the history of the active wavefronts to the fraction of
fresh sites, note that Eqgs. (3.1) and (4.7) give

Jo(t—1p) —fo (t;p) = (gV ™~V — g""0) = £, (#;p),
(4.21)

where f, (;p) is the fractional activity at seeding probability
p. Summing Eq. (4.21), using the initial conditions:
SFo(1ip) = g.fa (1;p) = p, withp + g = 1, gives

fotp) =1=73 fa(sp).

s=1

(4.22)

We now describe Monte Carlo results that support the
predictions of fluctuation and discrete symmetry effects on
growth for initial seeding. The lattice is randomly seeded at

probability p with active sites at time t = 1. From this state
active wavefronts spread on the fractal, progressing from
birth to death: Under the CA rule Eq. (1.1) active fronts
propagate, and annihilate when they meet, leading to even-
tual extinction. Our main observation, described below, is
that on the sponge-like carpet, both f, and f, change
smoothly, whereas on the tree-like snowflake they are struc-
tured.

Because . is a tree with a discrete dilatation symmetry,
the (ensemble) activity f, does not grow smoothly but is
spiky at all p: Dynamics is dominated by the passage of the
wavefronts through the hierarchy of articulation points
much like growth from single seeds. Even the summed vari-
ablef o (;p) = 1 — 2 f,, shows these structured, discrete-
symmetry effects. Figure 8 illustrates this: Graphs of
Inlog, [fo (t;p)] vsInt, for D = D, are shown at p val-
ues scaled by u = u» = 5. Here ¢, is a scaled time used to
eliminate small distance effects.*? The initial slopes D¢ are
all close to D = 1.4650, consistent with the prediction of
mean-field behavior at early times and low seeding density.
However these graphs drop smoothly below this average
rate of growth (D.; < D) due to the second moment contri-
bution, and eventually tail to the right with wildly fluctuat-
ing slopes (D 2D) due to higher moment contributions.
Each structured tail is similar in shape, corresponding to the
discrete symmetry implied by Egs. (4.19) and (4.20) and
can be brought into coincidence*® with its immediate neigh-
bors by translation through the vector { +Inu ., +In A}

={4+In5 +1In3}

In contrast, on sponge-like fractals like ¢, many paths
connect remote points, but only the shortest paths contrib-
ute to first-passage propagation. As discussed in Sec. III,

In log, fqs(t; p)

FIG. 8. Initial seeding results are plotted asIn log, /. (£p) vsIn 1, where

Jo. (t;p) is fraction of fresh (Q) siteson ¥’ (5), and £, is ascaled time (Ref.
41) with D = D .. Results are averages of 500 runs at four initial seeding
probabilities p, scaled by  , = 5: a~0.5; 8~0.1; ¥~0.02; §~0.004. For
all p, initial slope is D, = 1.44..., close to mean-field value D ,. = 1.4650.
This indicates continuous dynamical symmetry. At intermediate times,
plots show predicted depression below the mean-field line D, In ¢,. Note
fiuctuations in derivative, at long times, and the invariance of structured tail
plots under translation by In £ - vertically and In A horizontally indicating
discrete dynamical symmetry. Cf. Fig. 9.
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multiple connectedness causes random fluctuations in
growth from isolated site, but for many seeds these incoher-
ent fluctuations average out and the total activity varies
smoothly. This is apparent in Fig. 9 which shows
Inlog, [f o« (£p) ] vsIn t,, for D = D ,** and three p values
scaled by u =u, = 8. The initial slope of the graph is
D = 1.89..., close to the mean-field result, D, = 1.8928, as
expected at early times; the growth exponent is depressed
below this mean-field value at intermediate times and the
graphs have only weakly structured tails.

Simulations on hybrid fractals with known D, formed
by mixing %, %, and .& generators, when plotted like Figs.
8 and 9, give initial slopes of the corresponding known D.**

V. CONTINUOUS SEEDING ON FRACTAL AND
HOMOGENEOUS LATTICES

Continuous seeding in wave propagation processes has
been modeled on a linear lattice.?* Continuous nucleation
implies an irreversible phase change because new seeds arise
only in the untransformed phase, so the equilibrium state is
(trivially) the transformed phase. Relaxation to this trans-
formed state shows dynamical scaling.

In contrast, we consider continuous seeding for chemi-
cal wave propagation, where seeding occurs at a rate p per
lattice site per unit time, so new seeds arise in regions pre-
viously swept out by active wavefronts. This is an open, driv-
en system with a nontrivial steady state; indeed, different
situations can arise, depending on seeding rate and lattice
topology.

For very large pe(0.7,1.0] all lattices behave similarly
since the seeding step saturates the lattice. At intermediate
pe(0.2,0.7], distances between seeds are comparable with
the lattice spacing so that waves do not really propagate;

In log, fqc(t;p)

] i i
0-8.% 1.3 2.6 3.9 5.2

In ty

FIG. 9. Initial seeding results are plotted as In log, /.. (#p) vsIn ¢,, where
Joo (tp) is fraction of fresh (Q) sites on ¥ (5), and ¢, (at
D= D, = 1.8928) is a scaled time (Ref. 41). Results are averages of 50
runs at three initial seeding probabilities p, scaled by u, = 8:a~0.1;
£~0.0125; y~0.0015625. Plots are smooth, initial slope is
D = 1.89..= D, = 1.8928. Dynamical symmetry is nearly continuous
for all time, but at long times shows depression of weakly structured tails
below mean-field value. Cf. Fig. 8.
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hence the CA rule affects nearest neighbors only and the
seeding process still dominates behavior. For small
p€[0,0.2], behavior depends on whether lattice neighbor-
hoods support (self-sustaining) oscillators, since contin-
uous seeding generates such oscillators through collisions of
seeds with wavefronts. For example, the carpet supports os-
cillators, whereas the snowflake does not; on random frac-
tals only parts of the lattice will be able to support oscillators,
and this leads to interesting effects.

The simplest model of continuous seeding is a Markov
chain (MC) with two stochastic matrices: S represents seed-
ing and R the CA rule.” These operate successively on the
state vector for the system. Since each lattice may have three
states this vector has three components, representing the
fraction of sites in each of the CA states. The operator .S
expresses the fact that only Q sites can be excited and is
strictly time independent:

1 00
Spy=lo 1 o] (5.1
p 0 ¢

The transition probabilities of R depend on the instanta-
neous state of the lattice and so change with time, but they
may be taken to be time independent, which usually means
they are fixed at values appropriate for an initially quiescent
lattice. Both models are useful, so to be general we define R
by
0 1 0
R(tp) = 0 0 1 ,
I1—(l—ag)" 0 (1—ag)

where n = (N(r,1)) — 1 the lattice mean nearest-neighbor
number,*® and a; is the active population after seeding. The
time evolution is then written as

Ts(t+ 1) = 7 ()S(p)
and
7 (1) = T (DR (p). (5.4)

We denote the steady state in this model by {7%,7% }, where
75 = (ahrhgt), ete.

The steady-state fractional activity a* for . and .% is
shown in Fig. 10. For ., n = 8 and the time-dependent MC
with ag = as (¢) gives curve () which compares very well
with the simulation (a). Note that this nonlinear model pre-
dictsthata¥=~1/3asp-0" .Since .Z supports self-sustain-
ing patterns under continuous seeding, the time-dependent
MC captures the effect of persistent oscillator patterns. This
autocatalysis is a singular perturbation or growth instability
in the model, since p = 0 means a5 = 0. For ¥, n =2 and
both time-dependent and time-independent MCs were stud-
ied.*> At large p, the time-dependent MC gives curve (y)
which is very close to the simulation curve (&), but breaks
down at small p because it predicts finite activity at vanish-
ingly small seeding rate. However the time-independent
MC, with fixed active population ag =ag(1)=p in R,
gives curve {€) which implies the active population ¢¥% -0,
as p-0, like the simulation (8). Note however that the sin-
gular slope found in simulations is not predicted. Since .%¥
cannot support oscillators, we infer the time-independent

(5.2)

(5.3)
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FIG. 10. Comparison of results of Markov chain (MC) models and simula-
tion. Figure shows values of steady-state activity a¥ vs p, the continuous
seeding probability, for % and .. For .& (upper two curves), a labels
simulation, and £ time-dependent MC result. These differ slightly at small p
where simulation result is 1/3, and at large p results are indistinguishable.
Steady state contains self-sustaining pattern at all p on .. For .% (lower
three curves), v is time-dependent MC, § is simulation, and € is time-inde-
pendent MC. Note how well simulation and time-dependent MC agree at
large p, but simulation and time-independent MC both vanish at small p,
because there are no self-sustaining patterns on .%. Simulation has infinite
derivative at p = 0.

model imitates this property better at small p.

It is evident from Fig. 10 that for p> 0.3 behavior is
independent of lattice structure; at very large p, relaxation to
the steady-state shows period 2 oscillations which changes to
period 3 as p decreases to intermediate values.**

We now discuss pattern morphology for continuous
seeding at small p, both on lattices like .¥” and % that sup-
port oscillators, and also on lattices like . that only allow
transient patterns. We also discuss new propagation effects
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on random fractals which have mixed neighborhoods.

At small p, all lattices that can support oscillators be-
have in the same way, regardless of embedding dimension d
or fractal dimension D. Pattern formation on these lattices
from an initially quiescent field follows the same sequence.
This evolution is illustrated in Fig. 11 which shows a history
of continuous seeding at Jow seeding rate p = 0.01 on the
square matching lattice . (3). Starting from the quiescent
lattice, frame (a) at £ = 1 shows the sparse active state just
after seeding. A system of expanding, colliding rings then
forms, reminiscent of initial seeding. Frame (b) at =15
shows this transient ring system. An oscillating center has
just formed, as a result of seeding along the active front of the
(transient) rings. Frame (c) at = 15 shows target patterns
radiated by a variety of (four) oscillators. New oscillators
can be formed in both the transient ring system, leading to
new target patterns, or in the target pattern system leading to
embedded target patterns. Thus the fraction of the lattice
taken over by target patterns obeys the continuous nuclea-
tion equation (1.3). Roughly one third of the lattice is now
in each state A, R, and Q, and this equilibrium population
persists through the next stages of pattern evolution. The
rate of spontaneous oscillator formation increases with p.
Frame (d) at t = 50 shows the incipient break up of these
target patterns, with an increasing number of new oscillating
centers replacing old ones. From now on there is a progres-
sive break down of spatial correlations in the pattern. Frame
(e) at t = 200 shows an advanced stage of this fragmented
but self-sustaining lattice state. Frame (f) at ¢ = 500 indi-
cates the statistical invariance of the steady state achieved in
frame (e).

The carpet, like ., has a local lattice topology that
supports oscillators: This is illustrated in Fig. 12, which
shows % (4) for p = 0.01 at ¢ = 500. The similarity to frame
11(f) is evident.

In contrast, .~ (a simple tree) cannot support oscilla-
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Z(3). (a) At = 1, the initially seeded state is
shown. (b) Atz =35, transients rings with one
oscillator have formed. (¢) At ¢ = 15, several
oscillators have formed and radiate rings; popu-
lationis 1/3in A, R, and Q. (d) At ¢ = 50, the
continuous formation of oscillators has reduced
correlation length of wavefront. (e) Atz = 200,
the ring structure has completely broken up. (f)
At 1= 500, the steady state is statistically the
same as (¢€).

o+
]

=

ul

[=]a5)
goRoaN!
] =1<Iml

=]
0l
0
[a]
-]
[
[<]
u]
0
0

[ (mis(ula]
aDEROOOM! gl
-l (slwlwi [ ]-] jel- e[ ]-Is] {a]

ﬂﬂﬂlDGDUEUﬂﬂllIDDDDIDBIHI =]

so0s!
o
7

(f) t£=500

J. Chem. Phys., Vol. 93, No. 5, 1 September 1990
Downloaded 17 Sep 2002 to 165.230.89.145. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



3480 A.J. lIrwin and S. J. Fraser: Propagation on fractals
EOBRRRCOOUCONDEODOCRARRD
00 g0 8o o= oo oo oo
ar ] 1-lule] Laktal ot fal LLLS- T
[ - =]e] iu] D [ 1-1]
D ﬂ D Do D
DmDD oo (8].]-]-]-1-]
ﬂﬂﬂGlﬂDBIG‘Gﬂﬂ.lﬂDDBDHIDIHUUUUIGUHI.CIIU..D ﬂ (& @i t-1<(wl &
Qg o oM Co_mg 0C om_6g oo -] 00 _@g_a
IIUﬂﬂllDDIUﬂﬂﬂlDIﬂUllGDDIDDUDUIDDDDUIDUHDIHDBGIIOI goagooad
| {-u]-lm]-] | uaroagon goacma gag { o] 111
u_ DD D g 00 Osa Dﬂ ac g g as d
[<]-[m]u] | <] (5] | {=]-[wla] EREOOEOEO0 | | [-]a] w}
oom ) | [a]-]-] L] |-]-]m) omQ u] [l -]
ano u OR Q oo 0O o m -] anm
a0 n [ 1 1] |=[aln} ] =] {-]=]u] [w] <] 00
aan | | [{-{al-{-1=] - ufw[{T { {mi"].]] a 0 oRea
L u | 00 20 CE OO OR 8 o uam 0
oao o RONORCONOEC0DDO00E ] n -1 {ula]
-1-1-1 DOOOEODROUDONERRENOEOOENDDDDNDODRODDONEA! | ] DOCWO0
B O [{w] DO oD MO 00 OO0 O 080 0D 08 OR 0O [-I=]l -]
ooBl sCODBROOBCNCNO0DESD00N0RNO0ERODA0NDT I») sBeC0o
omD pDow [nlalsla]-]-) sl 1-1 1 In} DoomoB OmD [B] [olwl1-1-]
»Bn DN an B0 = ooo . D mm ﬂ D II 0 _pE
som oRg: RDOOED _ EQODDE  DOEDE OD! Do 20D0D
IUUIDIIIUGIHIIIIUIDGUEGUGUIGUIDDDBDDHD.DDUUGIIUDDUUDU
[wl o On . od om O O O _wg Es_wg
IﬂDDlDEDDlﬂDﬂDIﬂIIUUIIIDIDUDIGIHUUDDDUUDIIIIIDIIIHHBDUDUIDDHIIUB
EE00A000NO00N00000g0000a0Ng CosDRERQCO
B 0D D8 &) DD 80 OO =0 OO O O ms OR _Ag
OosERRCORODDODROCODONOOORA00 [-1 [-]-]-]sia] 7T |
Osg " OoWOoE T EOSOED  #AD ooQ  Cogol
D =] [ a -} on - -] [- IR |
Jm) 8008 CoESob  Oos opo__ Boo
DIDIDDDIBBDIIIEDIDDDDDE'-II [aln] ] [-]u]=]-Ta]-} [simi-] | ju] 1-1u]-]a] T-T-77}
=ﬂgDIBIDDF 38 ggn'llggﬂﬂDlg Elggn=8028u-oﬂDDBBBDIDHDDDH
101 t 4
gooacos @ gogaoanes gooew FIG. 12. Steady state on carpet 4 (4) at t = 500
g°8a 00 & w0 _0g o_mm . .
Soacoason SoEomENNO gooeccses for continuous random seeding at p = 0.01.
B0 Dmn Note that roughly 1/3 of lattice sites are in each

ag_ oo o0
OoogouonDREOONMDOORACIA0!

lDDﬂﬂI

EIIUUUIHDDIDHGDI

state A, R, and Q. Cf. Fig. 13 for ./ (4).

| ] (w] |u]
-] BDHDIDDIBDDIIDDIDDDDDIDDID | ]
D | 1 D n] =]
a ﬂ ADbD s o [n} B _EB
S0 f-ini aimy 4 ui 1 imi-] RO fm
DDDEIIHIUIIIlDHDUI'ﬂﬂﬂﬂllﬂlﬂﬂlﬂDUDDﬂﬂlﬂﬂulﬂﬂﬂﬂlﬂ ag
a0 oo an 0a 00 0o a0 80 g0 OC 0D oo o [ ]-]
IDﬂﬂIDﬂﬂﬂU BDH AR00Cas00ACoa0000DoROECARADCN0O0
ﬂDDﬂDﬂﬂIDDDID amon [n Juisl is] 1-1-1 Ta] 1 t-0"{-lw]-]
[ {-] Ol o D B MO BO OB CO 0O
OsgooCaoOannocogos ORERNDOOBONOOCONEN
oog jul In(s[.]-] | [a]-] Dom =L ] ]wi 1] | s}
u_o 2 om O a. o o n o DD B ]
noo oomoon omn 1 1] [w]s]-la) l=] an
DOREEOQEEONCORDCIDE EDDDROEDRODDENONEN
o BI ﬂD ID an DD D R 0D BB DO ON DN &
ooDe ooo0annn OODEDBDOBUOESDNDON
I'IIDBDDDDDDDDIIIDIDIIIDDDDDDDIDDIBDDBDBIDBDIIIIDI (s]s] |.]
oD Qo ED DD D BO BB 0D OB DD OO D
'DDIIBUBBIIBDDIDDBIBDDIDDDDDDDDIDDDDDIIDDDDDIDDDI | s}~ w]
20 v} | RODOD |- 1e) i} i) WO -1
l I » o o o D o ns ||
aaguas ou al [~iaiug KOO O
Q TssadssOoussgOsoERncedO0sCasCedasssguusjesC00gdagaanaacaoencsad
a 0 00 ggo 00 o OO U E0 00 60 os O 20 80 as gu a0 EC w0 ao oo 00 . &
LL-ab J-[-1-lal { | |eful-lelalei-la} jelalai-1 ] { { fula{ ]} ] L0 LoD (ool G oo fe Ja | 1] [ el [ elelwlwi-[o1a] I { [-1]-]-]-]-[{a[lw]

tors, and must be continuously seeded to sustain activity.
Figure 13 shows . (4) at t = 500 continuously seeded at
p = 0.01. Notice how sparse activity is compared to that on
£ [Fig. 11(f)] and ¥ at the same time. Figure 10 shows a%
—0 as p- 0 with infinite derivative, so a¥ should show frac-
tional power-law scaling at very small p. This means activity
after Sor R is very similar, and so we denote this steady-state
population by /% (p). Furthermore, relaxation to this steady
state should show scaling behavior. We now present a mean-
field argument to find the dynamical scaling exponents for
. To be more general, let /* (p) denote the steady-state
fraction of active sites on any fractal %, which like ., sup-
ports only transients patterns. Then ¢ ¥, (p) will denote the
time for f, (£;p) 1o increase to /% /2 when the initial state is
quiescent. At seeding rate p, every seed is surrounded, on
average, by a volume V- proportional to p~! (p¥V,,. = 1)
in the “world” ¥ =% x{t}C%#? x{t}. Thus distance
and time for V- scalelike t(p) =p~ P+ wheret(p) is
the scaling distance/time at seeding rate p. Now the mass in
Z swept out in time #(p) scales like #(p)” so the density in
V- scales like t{(p)2/t(p)P+ ' = t(p) ' =pY P+ D je,

SR (p) = lim f, (£;p) <cpV/ P+ Y, (5.6)

since f, is the time average of the mean activity per lattice
site. The proportionality constant will depend on the partic-
ular realization when .# is a random fractal. Similarly, the

relaxation time to saturation ¢ ¥, (p), scales like

L (py<p™ (5.7)

For the case studied, ¥ = %, the steady-state population
exponent (D, 4+ 1) ' is 0.406..., whereas simulations for
seven p values between 10~* and 102 give a steady-state
exponent of 0.39 + 0.02.%¢ For the same range of p, simula-
tions show the relaxation time ¢ ¥, (p) scales with exponent
—0.42 - 0.02. So this simple scaling theory works quite
well.

On mixed fractals even richer dynamics is observed: Fig.
14 shows a fractal # (p» = 0.9,p,, = 0.1) which was con-
tinuously seeded at p =0.02 from ¢ = 1,2,...,20. Seeding
then stopped giving the pattern shown at ¢ = 200. Period 3
and period 4 signals propagate along the tree branches, sepa-
rated by carpet fragments containing oscillators. Interest-
ingly, period 3 does not “eat up” period 4 as on a homoge-
neous lattice and the whole configuration has period 12.

I/¢D+ 1)

VI. DISCUSSION

A cellular automaton growth model of the spread of
excitation in fractal spaces has been presented. The local CA
rule imitates the propagation of localized activity, so the
model is an epidemic process with certain spread of infection
between neighbors, like a forest fire where every tree is in-
flammable! The underlying fractal lattices display differ-
ences in connectedness and fractal dimension that occur in

J. Chem. Phys,, Vol. 93, No. 5, 1 September 1990
Downloaded 17 Sep 2002 to 165.230.89.145. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



A. J.irwin and 8. J. Fraser: Propagation on fractals 3481

-] 0.0 - -} [~ -} on
UDU D.D UDD DDB DDD
ju] o0 [w}
UD DDD
) -] a] 0O o_o oo
{w) u) (u) 0 (™)
o a g -2 -} o Q oo
=] =
O (=]
o= L=}
oo
=]
fnl -}
a o | Jis
s] o
{=ls} cm
o [wgs] o n 0 o oo
o O [»] (m) (w)
ao (w) aa oo an
luD .ﬂ. [w}
U (wi ] w}
0.0 o _o a U n a.n
jw) (=] =] a | J
o oo oo oo 8]
| = o o 00 o o
» | J =] O
=) - < JRs oo oo
a o o=
O o
o o =
o8 0o o g s s}
| ] 0 0 O
oo oo O 0 [wil o]
o.n o0
DGD DDD
a0
L]
a DU DD o
a o
oo oo
oo | s =] o 0
O o =] O
oo LR oo (=liw
o jajg s
[u] =]
o o o o
0o o_o a0 L J
=] a u] -]
a oo [mil=] | D
[m] oo am 0o o
0 =] n s) )
oo (wil s} an (w] oo
0o s jgn
(w) ju)
[ ] 0o Q
[migs) a_Q L el = | o o
[») a -] o ]
o a0 L I s =]
ju el o o
a] =
oo a o
| Js!
o
- =
=gy =]
DDD DDD
o0 =] o_o o L ]
a 0 0 (s} n
oo 0 o 0w a0 o
DDD DUD
0o aQa 0
a o a a o o o _a a0
Q a [») o =)
=] a o oo oQg oo

microscopic and macroscopic natural spaces. The way in
which the structure of the fractal supporting CA growth
affects dynamics has been examined carefully.

For single seeds the instantaneous activity does not
grow smoothly with the mean-field exponent D — 1, but
shows very large fluctuations (like random voltages across
percolation clusters). The average growth exponent may
also be “renormalized” from D — 1 because of the infinite
correlation length of fractal gaps. On trees with a scaling
length, fluctuations are structured and produce similar scal-
ing peaks in the active population; however, on very spongy
(highly ramified) fractals (or even on exact fractals like the
carpet) the instantaneous activity is intrinsically random.
This is in marked contrast to homogeneous lattices where
growth from single seeds is smooth and predictable.

In initial seeding, where seeds are randomly scattered
on the lattice, the area swept out by the excitation should
depend only on fractal dimension D in the mean-field ap-
proximation. At low seeding density and early times this
growth law is true on fractals, but lattice fluctuations are
important at longer times and (at first) depress the growth
exponent below the mean-field value. On trees with a scaling
length a discrete dynamical symmetry appears even in en-
semble growth at high seeding density or long times, due to
the hierarchical gap structure. An important implication of

o (=R =
o s} [a)
0o, G0 0
)
om
o o e 00
[a) o a
o s OO
oo =o
o o
oo L IR
.
o
0O 8
s g s o
k) a
oo Do
(w] oo [w)gn]
(] (s] (]
ju] a UD Du o
(=
00
a oo oo
[a) (% s)
o s o oo
FIG. 13. Steady state on snowflake .%(4) at
t=7500 for continuous random seeding at
7 = 0.01. Note low density of active sites since
no oscillators can be formed. Cf. Fig. 12 for
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the model is this: Wild fluctuations in the active population
may be unrelated to the population of previously active (in-
fected) sites, and therefore do not measure the progress of
disease or reaction on a tree-like structures; however, this
activity is correlated with “damage” or “disease” on sponge-
like fractals. Therefore, if activity promotes an immune re-
sponse in living systems, the model suggests that such a re-
sponse will be correlated with the degree of infection in a way
that depends on the connectedness of the structure involved.
In continuous seeding, lattice structure again plays a
crucial role. If a lattice can support oscillators, it is eventual-
ly filled with random periodic patterns, whose population is
easily predicted by a nonlinear time-dependent Markov
chain. However, if the lattice is a tree it cannot support oscil-
lators, and populations scale with seeding density. Random
fractals show complicated periodic effects due to the oscilla-
tor-sustaining properties of different lattice regions. The
phenomena described here are easily generated by random
seeding on fractals with simply connected branches and mul-
tiply connected (oscillating) nodes, because periodic pulses
can propagate along the branches between the nodes. In view
of the universal computing capability of some CA, and the
fact that the CA studied here imitates an excitable medium,
it seems very likely that even richer behavior with a logical or
computing function can be found in this dynamical model.
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